簡易檢索 / 詳目顯示

研究生: 林郁峰
Lin, Yu-Feng
論文名稱: 多相流理論應用於鉛直滲流過程之解析
Analysis of Vertical Seepage Process Using Multiphase Flow Theory
指導教授: 謝正倫
Shieh, Chjeng-Lun
共同指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 120
中文關鍵詞: 大規模崩塌傳輸現象鉛直滲流孔隙應力
外文關鍵詞: large scale landslide, transport process, vertical seepage, pore pressure
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極端坡地災害對於台灣影響日益嚴重,因此為了消除、降低生命財產損失,透過災害風險管理的掌握是政府、學界重視之課題。本研究將探究災害風險管理中應變之面相,透過基礎科學的展演,以研究大規模崩塌的發生機制,提供建置預警系統的學理依據。以降雨引致大規模崩塌為主,自案例收集與文獻回顧,了解邊坡內部滲流是劣化土壤強度的水力條件之一。由多相流理論建立,描述孔隙介質當中流體質量、動量的傳輸現象,解析固相結構經流體通過後產生之現象。惟需要透過設計情境以施作鉛直滲流實驗,以提供數據資料,修正多相流理論未完備之處,且觀察入滲過程所產生的現象。

    實驗成果呈現飽和與非飽和入滲,皆可發現滲流水錘的作用,差異在於強度大小和作用時間長短。藉由多相流理論解析,可發現此現象將影響孔隙水壓力的成長模式,因此土壤有效應力將產生變化,係利用安全係數的概念,了解超額驅動力作用於欲討論具質量之塊體,所產生之瞬時加速度。透過數值方法了解,使用多相流理論以敘述孔隙水壓力、孔隙氣壓變化歷程,其方法合理,未來可以使用現有邊坡模型分析其運動、變形過程與穩定性,同時內嵌多相流理論,試以完整地描述水力條件於邊坡內部的作用,作為大規模崩塌預警機制之前期研究。

    Extreme landslide disasters have caused severe damages in Taiwan in the past years. As a result, it is an urgent task for the government and the research communities to reduce the loss by means of disaster management or engineering countermeasures. The aim of this work, in terms of the response action in the disaster management, is to study the mechanism of large scale landslide, and to provide the foundation for building a rigorous warning system. Case studies and literature reviews show that water seepage in the slope is one of the hydraulic conditions responsible of strength weakening. In view of the above reasons, a coupled model based on multiphase flow theory is helpful for us to understand the transport process in porous medium, and to analyze the phenomenon about liquid flowing through the solid matrix.

    Experiments of water infiltration in a soil column were performed, of which the experimental observations serve as the base for modifying the theory, a coupled model. Two types of experiment were designed: the saturated infiltration and the unsaturated infiltration. In experiments of both type, the “seepage hammer” effect during the infiltration process can be observed, whose strength and duration depend on the types of the soil column. By the coupled model, it is found that the “seepage hammer” has impacts not only on development pattern of pore water pressure, but also on the soil strength. For this reason, a sudden increment of the excess driving force might be induced which causes the initial acceleration of the soil mass and the sudden drop of the safety factor. It is shown that the coupled model is able to reasonably describe the developments of the pressure of the pore water and pore air. Moreover, it could be regarded as a powerful tool for interpreting the hydraulic conditions in the slope unit. This work will become a preliminary study on the mechanism behind the occurrence of large scale landslide.

    摘要.............................................I Abstract.........................................II 誌謝.............................................XII 目錄.............................................XIII 圖目錄...........................................XVI 表目錄...........................................XIX 第一章 緒論......................................1 1.1 研究動機....................................1 1.2 研究目的與方法..............................2 第二章 文獻回顧..................................4 2.1 台灣的坡地災害特性及分類方法................4 2.2 大規模崩塌的發生機制研析....................11 2.2.1 傳輸現象理論發展背景及研究範疇............12 2.2.2 Darcy定律與Ricard方程式之推演.............14 2.2.3 Richard方程式與多相流理論發展之比較.......20 2.2.4 鉛直砂柱實驗研究..........................22 2.2.5 有效應力與邊坡穩定性分析..................25 第三章 基本理論..................................29 3.1 多相流理論..................................29 3.1.1 適用對象及範疇............................30 3.1.2 流體於孔隙介質內部作用的物理現象..........32 3.2 控制方程式的建立............................34 3.2.1 質量守恆方程式............................36 3.2.2 動量守恆方程式............................37 3.2.3 狀態方程式................................39 3.2.4 多相流理論之慣性座標系統..................41 3.2.5 附加內力項的建立..........................42 3.2.6 孔隙介質內部應力解析......................44 3.3 安全係數的應用..............................49 第四章 實驗設計................................50 4.1 實驗目的....................................50 4.2 固相結構之物理性質..........................53 4.2.1 篩分析試驗................................54 4.2.2 比重試驗..................................55 4.2.3 飽和滲透係數試驗..........................56 4.2.4 顆粒孔隙率試驗............................58 4.3 感測器介紹與率定............................60 4.3.1 孔隙水壓力計..............................61 4.3.2 電子計重磅秤..............................62 4.4 資料擷取器介紹與設定........................63 4.4.1 資料擷取系統..............................63 4.4.2 圖控程式軟體..............................65 第五章 實驗成果..................................67 5.1 實驗邊界條件的探討..........................68 5.2 實驗數據量測................................68 5.3 實驗成果觀察與討論..........................71 5.3.1 砂柱底部排氣系統..........................71 5.3.2 砂柱表面排氣系統..........................72 第六章 理論與實驗成果討論、比較..................79 6.1 滲流水錘強度之解析..........................80 6.2 安全係數之解析..............................83 6.3 實驗數據與控制方程式的比較..................86 6.4 控制方程式之數值解析........................89 6.4.1 數值解析所需控制方程組....................90 6.4.2 數值解析方法..............................92 6.4.3 數值解析成果..............................93 第七章 結論與建議................................97 7.1 結論........................................97 7.2 建議........................................99 參考文獻.........................................101 附錄一...........................................109

    [1]大八木規夫,(2004)。「地すべり 地形地質的認識と用語」,日本地すべり学会。
    [2]孔祥言,(1999)。「高等滲流力學」,中國科學技術大學出版社。
    [3]李錫堤、董家鈞、林銘郎,(2009)。「小林村災變之地質背景探」討,地工技術(122),87-94。
    [4]林美聆、王幼行,(1999)。「地表水及地下水對土石流破壞型態之影響」,地工技術,(74),29-38。
    [5]林錫宏、紀宗吉,(2012)。”Geological Characteristics and Deformation Mechanisms of the Large Deep-Seated Rockslide in Lushan, Nantou County”,經濟部中央地質調查所彙刊,1-26。
    [6]姚凱超、賴長興、方俊修,(2013)。「自動量測技術」,全華圖書股份有限公司。
    [7]張峻閔,(2014)。「以實驗探討滑坡在滲流情況下破壞的機制與條件」,成功大學水利及海洋工程學系學位論文。
    [8]章根德,(1993)。「固體-流體混合物連續介質理論及其在工程上的應用」,力學進展,23(1),58-68。
    [9]陳主惠、張守陽、周憲德、李伯亨,(2004)。「入滲對非飽和邊坡淺層崩塌發生機制之研究」,中華水土保持學報,35(1),69-77。
    [10]黃景川、駱建利、朱奕璋、胡立康、李金龍、張家薰、雲世傑,(2011)。「降雨引發淺層邊坡破壞機制」,中華水土保持學報,42(3),184-195。

    [11]楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利,(2011)。「臺灣常用山崩分類系統」,The 14th Conference on Current Researches in Geotechnical Engineering in Taiwan。
    [12]經濟部中央地質調查所,(2011)。「大規模潛在山崩機制調查與活動性觀測成果報告(1/4)」。
    [13]經濟部中央地質調查所,(2012)。「大規模潛在山崩機制調查與活動性觀測成果報告(2/4)」。
    [14]經濟部中央地質調查所,(2013)。「大規模潛在山崩機制調查與活動性觀測成果報告(3/4)」。
    [15]經濟部中央地質調查所,(2014)。「大規模潛在山崩機制調查與活動性觀測成果報告(4/4)」。
    [16]葉信富、鄭佳元、李振誥,(2010)。「降雨誘發松茂地滑區淺層坡地崩塌之研究」,中華水土保持學報,41(2),113-142。
    [17]詹孟浚、梁偉立,(2014)。「以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位」,中華水土保持學報,45(2),85-94。
    [18]劉哲欣、吳亭燁、陳聯光、林聖琪、林又青、陳樹群、周憲德,(2011)。「臺灣地區重大岩體滑動案例之土方量分析」,中華水土保持學報,42(2),150-159。
    [19]行政院農業委員會水土保持局南投分局,(2008)。「廬山地滑監測及後續治理規劃成果報告」。

    [20]Angeli, M. G., Gasparetto, P., Menotti, R. M., Pasuto, A. and Silvano, S., (1996). “A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy.” Quarterly Journal of Engineering Geology and Hydrogeology, 29(3), 233-240.
    [21]Bernadiner, M. G., (1998). “A capillary microstructure of the wetting front.” Transport in porous media, 30(3), 251-265.
    [22]Bishop, Alan W. and G. E. Blight, (1963). “Some aspects of effective stress in saturated and partly saturated soils.” Geotechnique, 13(3), 177-197.
    [23]Bowen, R. M., (1976). “Theory of mixtures. Continuum physics (Vol. III)” Waltham: Academic Press.
    [24]Campbell, R. H. (1975). “Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California (No. 851)” US Govt. Print. Off.
    [25]Carman, P. C., (1997). “Fluid flow through granular beds.” Chemical Engineering Research and Design, 75, S32-S48.
    [26]Celia, M. A. and Binning, P., (1992). “A mass conservative numerical solution for two‐phase flow in porous media with application to unsaturated flow.” Water Resources Research, 28(10), 2819-2828.
    [27]Collins, B. D. and Znidarcic, D., (2004). “Stability analyses of rainfall induced landslides.” Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 362-372.
    [28]Conte, E. and Troncone, A., (2011). “Simplified approach for the analysis of rainfall-induced shallow landslides.” Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 398-406.
    [29]Corey, A. T., (1994). “Mechanics of immiscible fluids in porous media.” Water Resources Publication Press.
    [30] Currie, I. G., (2012). “Fundamental mechanics of fluids.” CRC Press.
    [31] Das, B. M. (2013). “Advanced soil mechanics.” CRC Press.
    [32]de Boer, I. R. and Ehlers, P. D. D. I. W., (1990). “The development of the concept of effective stresses.” Acta Mechanica, 83(1-2), 77-92.
    [33]Demond, A. H. and Roberts, P. V., (1987). “An Examination Of Relative Permeability Relations For Two‐Phase Flow In Porous Media1.” Journal of the American Water Resources Association, 23(4), 617-628.
    [34]Flageollet, J. C., Maquaire, O., Martin, B. and Weber, D., (1999). “Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France).” Geomorphology, 30(1), 65-78.
    [35]Glass, R. J., Steenhuis, T. S., and Parlange, J. Y., (1989). “Mechanism for finger persistence in homogeneous, unsaturated, porous media: theory and verification.” Soil Science, 148(1), 60-70.
    [36]Heber Green, W., and Ampt, G. A., (1911). “Studies on Soil Phyics.” The Journal of Agricultural Science, 4(01), 1-24.
    [37]Hill, D. E., and Parlange, J. Y., (1972). “Wetting front instability in layered soils.” Soil Science Society of America Journal, 36(5), 697-702.
    [38]Hillel, D., (1980).”Fundamentals of soil physics.” Academic Press, Inc.(London) Ltd.
    [39]Hubbert, M. K., (1940). “The theory of ground-water motion.” The Journal of Geology, 785-944.
    [40]Hungr, O., (1995). “A model for the runout analysis of rapid flow slides, debris flows, and avalanches.” Canadian Geotechnical Journal, 32(4), 610-623.
    [41]Imaizumi, F. and Miyamoto, K., (2011). “Non-dimensional parameters controlling occurrence and characteristic of landslides that provide sediment for debris flow development.” 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy
    [42]Iverson, R. M. (2000). “Landslide triggering by rain infiltration.” Water resources research, 36(7), 1897-1910.
    [43]Laloui, L., Klubertanz, G., and Vulliet, L., (2003). “Solid–liquid–air coupling in multiphase porous media.” International Journal for Numerical and Analytical Methods in Geomechanics, 27(3), 183-206.
    [44]Lu, N., & Likos, W. J., (2006). “Suction stress characteristic curve for unsaturated soil.” Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131-142.
    [45]Miyamoto, K. & Imaizumi, F. (2012). “A theoretical explanation of triggering condition of deep-seated landslide”, Proceedings of 3rd International Workshop on Multimodal Sediment Disasters, A-5,1-8.
    [46]Miyazaki, T., (2005). Water flow in soils. CRC Press.

    [47]Nield, D. A. and Bejan, A. (2006). Convection in porous media. Springer Science & Business Media.
    [48]Perla, R., Cheng, T.T., and McClung, D.M.(1980). “A two-parameter model of snow-avalanche motion.” Journal of Glaciology, 26: 197-207.
    [49]Prokešová, R., Medveďová, A., Tábořík, P and Snopková, Z., (2013). “Towards hydrological triggering mechanisms of large deep-seated landslides.” Landslides, 10(3), 239-254.
    [50]Robert, O. Goetz., (1971). “Investigation into using air in the permeability testing of granular soils”, final report.
    [51]Schuurman, I. E., (1966). “The compressibility of an air/water mixture and a theoretical relation between the air and water pressures.” Geotechnique, 16(4), 269-281.
    [52]Sparks, A. D. W., (1965). “Theoretical considerations of stress equations for partly saturated soils.” Civil Eng Bull, Capetown University.
    [53]Srinilta, S. A., Nielsen, D. R. and Kirkham, D. (1969). “Steady flow of water through a two‐layer soil.” Water Resources Research, 5(5), 1053-1063.
    [54]Takagi, S., (1960). “Analysis of the vertical downward flow of water through a two-layered soil.” Soil Science, 90(2), 98-103.
    [55]Terzaghi, K., (1996). Soil mechanics in engineering practice. John Wiley & Sons.
    [56]Teunissen, J. A. M., (1982). ”Mechanics of a fluid-gas mixture in a porous medium.” Mechanics of materials, 1(3), 229-237.
    [57]Timoshenko, S. P. and Young, D. H., (1965). Theory of structures. New York: McGraw-Hill
    [58]Touma, J. and Vauclin, M., (1986). “Experimental and numerical analysis of two-phase infiltration in a partially saturated soil.” Transport in Porous Media, 1(1), 27-55.
    [59]Truesdell, C. (Ed.)., (1965). Continuum mechanics. Gordon and Breach.
    [60]Uchida, T., Yokoyama, O., Nishiguchi, Y., Suzuki, R., Takezawa, N., Tamura, K. and Hara, Y., (2011). “Recent Advances of Methods for Prediction of Disasters Triggered by Deep Catastrophic Landslide.” Journal of Chinese Soil and Water Conservation, 42(4), 344-353
    [61]Van Asch, T. W., Malet, J. P. and Bogaard, T. A., (2009). “The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides.” Natural Hazards and Earth System Sciences, 9 (3), 2009.
    [62]Van Asch, T. W., Van Beek, L. P. H. and Bogaard, T. A., (2007). “Problems in predicting the mobility of slow-moving landslides.” Engineering Geology, 91(1), 46-55.
    [63]Wang, Z., Feyen, J. and Ritsema, C. J., (1998). “Susceptibility and predictability of conditions for preferential flow.” Water Resources Research, 34(9), 2169-2182.
    [64]Warrick, A. W. (Ed.), (2001). Soil physics companion. CRC press.
    [65]Wheeler, S. J., (1988). “A conceptual model for soils containing large gas bubbles.” Geotechnique, 38(3), 389-397.

    [66]Wienhöfer, J., Lindenmaier, F. and Zehe, E., (2011). “Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides.” Vadose Zone Journal, 10(2), 496-511
    [67]Wilson, L. G. and Luthin, J. N., (1963). “Effect of air flow ahead of the wetting front on infiltration.” Soil Science, 96(2), 136-143.
    [68]Wyckoff, R. D. and Botset, H. G., (1936). “The Flow of Gas-Liquid Mixtures through Unconsolidated Sands.” Journal of Applied Physics, 7(9), 325-345.
    [69]Yang, H., Rahardjo, H. and Leong, E. C., (2006). “Behavior of unsaturated layered soil columns during infiltration.” Journal of Hydrologic Engineering, 11(4), 329-337.
    [70]Yin, Y. P., (2011). “Recent catastrophic landslides and mitigation in China.” Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 10-18.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE