| 研究生: |
廖浚硯 Liao, Chun-Yen |
|---|---|
| 論文名稱: |
製備鉬酸鋅/氧化鋅薄膜應用於光催化降解4-硝基苯酚 Zinc molybdate and zinc oxide thin film for photocatalytic degradation of 4-nitrophenol |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 氧化鋅 、鉬酸鋅 、電沉積 、光催化 、4-硝基苯酚 |
| 外文關鍵詞: | zinc oxide, zinc molybdate, electrodeposition, 4-nitrophenol, photodegradation |
| 相關次數: | 點閱:61 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用簡單低成本的電化學沉積方式製備氧化鋅/鉬酸鋅複合薄膜光催化劑,利用定電位法在FTO基板上沉積氧化鋅基底,再利用循環伏安法將鉬酸鋅形成於氧化鋅基底上,成功製備出氧化鋅與鉬酸鋅複合光催化劑,並應用於光催化降解4-硝基苯酚。
透過XRD、SEM、循環伏安法以及EDS mapping 對ZnO/ZnMoO4薄膜進行製備條件最佳化探討,分別探討不同電位、溫度下所形成的ZnO基底對後續的鉬酸鋅形成之影響,以及不同pH值、掃描速率、鍛燒溫度對鉬酸鋅形成結果探討,可得知隨著電位、溫度改變,對鉬酸鋅的形成不會有很大的影響,但當電位較低時氧化鋅的沉積效果較差,而當溫度過高(70℃)時,由於氣泡的增加導致薄膜的破裂,使的薄膜的穩定性降低,此外隨著pH值以及掃描速率的降低,鉬酸鋅之形成量也會增加,但是當pH值(pH = 1)以及掃描速率(3 mV/s)過低時,薄膜會因鉬酸鋅的形成過多導致薄膜破裂進而造成薄膜穩定性降低,並藉由XRD以及SEM得知隨著鍛燒溫度的增加,其晶型結構越佳且顆粒性越明顯。
最佳化之ZnO/ZnMoO4光降解4-硝基苯酚,可在2小時內達到25.9%的降解效率,為了改善薄膜之光催化性能,透過定電位法修飾銀於薄膜表面,抑制光生電子-電洞對再復合速率,其降解4-硝基苯酚之降解效率在兩小時內可提升至46.9%。
In this work, fluorine doped tin oxide (FTO) glass modified with both zinc oxide and zinc molybdate by using simple electrodeposition in two-steps manner. First, zinc oxide was electrodeposited on FTO by constant current method. Then, the zinc molybdate modified layer using ZnO as the substrate is prepared by cyclic voltammetry.
ZnO/ZnMoO4 composite film has been characterized by using XRD、CV、SEM、EDS to optimize the experimental parameters. ZnO/ZnMoO4 composite film applied to photocatalytic degradation of 4-nitrophenol for 2 hours, the degradation rate of 4-nitrophenol reached 25.9%. To improve the photodegradation properties of the ZnO/ZnMoO4 composite film, the recombination of photogenerated electron-hole pairs can be suppressed by modifying metallic silver on film and the charge separation phenomenon can be enhanced. The photodegradation efficiency of the silver-modified ZnO/ZnMoO4 composite film is 21% higher than that of the pure ZnO/ZnMoO4 composite film. In this study, the immobilized photocatalytic composite material was successfully applied to degrade organic pollutants, reduce the possibility of secondary pollution, and improve the problem of water pollution.
1. Fatima, R.; Afridi, M. N.; Kumar, V.; Lee, J.; Ali, I.; Kim, K.-H.; Kim, J.-O., Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 2019, 231, 899-912.
2. Zhang, S.; Sun, W.; Xu, L.; Zheng, X.; Chu, X.; Tian, J.; Wu, N.; Fan, Y., Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7. BMC Microbiology 2012, 12 (1), 27.
3. Motamedi, M.; Yerushalmi, L.; Haghighat, F.; Chen, Z., Recent developments in photocatalysis of industrial effluents A review and example of phenolic compounds degradation. Chemosphere 2022, 296, 133688.
4. Panigrahy, N.; Priyadarshini, A.; Sahoo, M. M.; Verma, A. K.; Daverey, A.; Sahoo, N. K., A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27.
5. Halecky, M.; Karlova, P.; Paca, J.; Stiborova, M.; Kozliak, E. I.; Bajpai, R.; Sedlacek, I., Biodegradation of a mixture of mononitrophenols in a packed-bed aerobic reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng 2013, 48 (9), 989-99.
6. Serrà, A.; Artal, R.; Pozo, M.; Garcia-Amorós, J.; Gómez, E., Simple environmentally-friendly reduction of 4-nitrophenol. Catal. 2020, 10 (4), 458-470.
7. Ma, Y. S.; Huang, S. T.; Lin, J. G., Degradation of 4-nitrophenol using the Fenton process. Water Science and Technology 2000, 42 (3-4), 155-160.
8. Yao, Y.-X.; Li, H.-B.; Liu, J.-Y.; Tan, X.-L.; Yu, J.-G.; Peng, Z.-G., Removal and adsorption of p-nitrophenol from aqueous solutions using carbon nanotubes and their composites. Journal of Nanomaterials 2014, 2014, 1-9.
9. Halecky, M.; Paca, J.; Stiborova, M.; Kozliak, E. I.; Maslanova, I., Pollutant interactions during the biodegradation of phenolic mixtures with either 2- or 3-mononitrophenol in a continuously operated packed bed reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng 2013, 48 (13), 1609-18.
10. Fu, H.; Zhang, J. J.; Xu, Y.; Chao, H. J.; Zhou, N. Y., Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors. Lett. Appl. Microbiol. 2017, 64 (3), 203-209.
11. Kastner, C.; Thunemann, A. F., Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 2016, 32 (29), 7383-91.
12. Seoudi, R.; Al-Marhaby, F. A., Synthesis, characterization and photocatalytic application of different sizes of gold nanoparticles on 4-nitrophenol. World j. nano sci. eng. 2016, 06 (03), 120-128.
13. Fu, M.; Li, M.; Zhao, Y.; Bai, Y.; Fang, X.; Kang, X.; Yang, M.; Wei, Y.; Xu, X., A study on the high efficiency reduction of p-nitrophenol (4-NP) by a Fe(OH)3/Fe2O3@Au composite catalyst. RSC. Adv. 2021, 11 (43), 26502-26508.
14. Chang, Y. C.; Chen, D. H., Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater 2009, 165 (1-3), 664-9.
15. Liu, B.; Yan, S.; Zhang, A.; Song, Z.; Sun, Q.; Huo, B.; Yang, W.; Barrow, C. J.; Liu, J., Insight into catalytic mechanisms for the reduction of nitrophenol via heterojunctions of gold nanoclusters on 2D boron nitride nanosheets. Chem. Nano. Mat. 2019, 5 (6), 784-791.
16. Zhu, M.; Zhang, L.; Liu, S.; Wang, D.; Qin, Y.; Chen, Y.; Dai, W.; Wang, Y.; Xing, Q.; Zou, J., Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode. Chin. Chem. Lett. 2020, 31 (7), 1961-1965.
17. Zhao, H.; Pang, X.; Huang, Y.; Bai, Y.; Ding, J.; Bai, H.; Fan, W., Electrocatalytic reduction of 4-nitrophenol over Ni-MOF/NF: understanding the self-enrichment effect of H-bonds. Chem. Commun. 2022, 58 (31), 4897-4900.
18. Nie, Y.-C.; Yu, F.; Wang, L.-C.; Xing, Q.-J.; Liu, X.; Pei, Y.; Zou, J.-P.; Dai, W.-L.; Li, Y.; Suib, S. L., Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism. Appl. Catal. 2018, 227, 312-321.
19. Ahn, W.-Y.; Sheeley, S. A.; Rajh, T.; Cropek, D. M., Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Applied Catalysis B: Environmental 2007, 74 (1-2), 103-110.
20. Mele, G.; Del Sole, R.; Vasapollo, G.; Garcı́a-López, E.; Palmisano, L.; Schiavello, M., Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis 2003, 217 (2), 334-342.
21. San, N.; Hatipoğlu, A.; Koçtürk, G.; Çınar, Z., Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry 2002, 146 (3), 189-197.
22. Achamo, T.; Yadav, O. P., Removal of 4-nitrophenol from water using Ag-N-P-tridoped TiO2 by photocatalytic oxidation technique. Anal Chem Insights 2016, 11, 29-34.
23. Osin, O. A.; Yu, T.; Cai, X.; Jiang, Y.; Peng, G.; Cheng, X.; Li, R.; Qin, Y.; Lin, S., Photocatalytic degradation of 4-nitrophenol by C, N-TiO2: Degradation efficiency vs. embryonic toxicity of the resulting compounds. Front. Chem. 2018, 6.
24. Khatamian, M.; Divband, B.; Jodaei, A., Degradation of 4-nitrophenol (4-NP) using ZnO nanoparticles supported on zeolites and modeling of experimental results by artificial neural networks. Materials Chemistry and Physics 2012, 134 (1), 31-37.
25. Nezamzadeh-Ejhieh, A.; Hushmandrad, S., Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Applied Catalysis A: General 2010, 388 (1-2), 149-159.
26. Nezamzadeh-Ejhieh, A.; Khorsandi, S., Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. Journal of Industrial and Engineering Chemistry 2014, 20 (3), 937-946.
27. Farbod, M.; Khademalrasool, M., Synthesis of TiO2 nanoparticles by a combined sol–gel ball milling method and investigation of nanoparticle size effect on their photocatalytic activities. Powder Technology 2011, 214 (3), 344-348.
28. Behnajady, M. A.; Modirshahla, N.; Hamzavi, R., Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater 2006, 133 (1-3), 226-32.
29. Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y., Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 2008, 156 (1-3), 80-5.
30. Benhebal, H.; Chaib, M.; Leonard, A.; Lambert, S. D.; Crine, M., Photodegradation of phenol and benzoic acid by sol–gel-synthesized alkali metal-doped ZnO. Materials Science in Semiconductor Processing 2012, 15 (3), 264-269.
31. Tju, H.; Shabrany, H.; Taufik, A.; Saleh, R., Degradation of methylene blue (MB) using ZnO/CeO2/nanographene platelets (NGP) photocatalyst: Effect of various concentration of NGP. AIP Conf. Proc. 2017.
32. Joshua Toyin, A.; Thirugnanasambandan, T.; Thiruppathi, M.; Swaminathan, M.; Akomolafe, T.; Alabi, A., Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 2018, 455.
33. Saeed, M.; Khan, I.; Adeel, M.; Akram, N.; Muneer, M., Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. New J. Chem. 2022, 46 (5), 2224-2231.
34. Ali, M. M.; Haque, M. J.; Kabir, M. H.; Kaiyum, M. A.; Rahman, M. S., Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities. Results Phys. 2021, 11, 100199.
35. Mafa, P. J.; Ntsendwana, B.; Mamba, B. B.; Kuvarega, A. T., Visible light driven ZnMoO4/BiFeWO6/rGO Z-scheme photocatalyst for the degradation of anthraquinonic dye. J. Phys. Chem. C 2019, 123 (33), 20605-20616.
36. Aman, D.; Abdel-Azim, S.; Said, S.; Mohamed, S. G., Facile synthesis of ZnMoO4/AlPO4-5 nanorod composites as visible-light-driven photocatalysts and high-performance energy storage materials. RSC. Adv. 2022, 12 (12), 7120-7132.
37. Cui, Y. W.; Zhang, H. H.; Yu, S. Y., Constructing ZIF-8 derived C-ZnS/ZnMoO4@MoS2 and C-ZnS/MoS2 nanocomposites using a simple one-pot strategy to enhance photocatalytic degradation activity. RSC. Adv. 2019, 9 (60), 35189-35196.
38. Yadav, P.; Sinha, E., Structural, photophysical and microwave dielectric properties of α-ZnMoO4 phosphor. J. Alloys Compd. 2019, 795, 446-452.
39. Spassky, D. A.; Vasil'ev, A. N.; Kamenskikh, I. A.; Mikhailin, V. V.; Savon, A. E.; Hizhnyi, Y. A.; Nedilko, S. G.; Lykov, P. A., Electronic structure and luminescence mechanisms in ZnMoO4 crystals. J Phys Condens Matter 2011, 23 (36), 365501.
40. Cavalcante, L. S.; Moraes, E.; Almeida, M. A. P.; Dalmaschio, C. J.; Batista, N. C.; Varela, J. A.; Longo, E.; Siu Li, M.; Andrés, J.; Beltrán, A., A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 2013, 54, 13-25.
41. Oudghiri-Hassani, H.; Rakass, S.; Abboudi, M.; Mohmoud, A.; Al Wadaani, F., Preparation and characterization of alpha-zinc molybdate catalyst: Efficient sorbent for methylene blue and reduction of 3-nitrophenol. Molecules 2018, 23 (6).
42. Raya, I.; Widjaja, G.; Mahmoud, Z.; Kadhim, M., ZnMoO4 nanoparticles: Novel and facile synthesis, characterization, and photocatalytic performance. J Nanostruct. 2022, 12, 446-454.
43. Ramezani, M.; Hosseinpour-Mashkani, S. M.; Sobhani-Nasab, A.; Ghasemi Estarki, H., Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. Journal of Materials Science: Materials in Electronics 2015, 26 (10), 7588-7594.
44. Wang, D.; Huang, M.; Zhuang, Y.; Jia, H. l.; Sun, J.; Guan, M., Phase‐ and morphology‐controlled synthesis of zinc molybdate for excellent photocatalytic properties. Eur. J. Inorg. Chem. 2017, 2017 (42), 4939-4946.
45. Jiang, Y.-R.; Lee, W. W.; Chen, K.-T.; Wang, M.-C.; Chang, K.-H.; Chen, C.-C., Hydrothermal synthesis of β-ZnMoO4 crystals and their photocatalytic degradation of Victoria Blue R and phenol. Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (1), 207-218.
46. Ma, Q.; Li, X.; Li, G.; Shao, Z., Synthesis and electrochemical properties of cubic-like ZnMoO4 anode materials. J. Mater. Sci. 2020, 55 (28), 13905-13915.
47. Li, Y.; Chen, S.; Wu, X.; Zhang, H.; Zhang, J., A hybrid zeolitic imidazolate framework-derived ZnO/ZnMoO4 heterostructure for electrochemical hydrogen production. J. Chem. Soc., Dalton Trans. 2021, 50 (33), 11365-11369.
48. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. JOHN WILEY & SONS, INC.: New Yorke, 2001; Vol. 2nd.
49. P.S, J.; Sutrave, D. S., A brief study of cyclic voltammetry and electrochemical analysis. Int. J. Chemtech Res. 2018, 11 (9), 77-88.
50. Guy, O. J.; Walker, K.-A. D., Graphene Functionalization for Biosensor Applications. Elsevier: Amsterdam, The Netherlands, 2016; p 85-141.
51. Saidi, R.; Ashrafizadeh, F.; Raeissi, K.; Kharaziha, M., Electrochemical aspects of zinc oxide electrodeposition on Ti6Al4V alloy. Surf. Coat. Technol. 2020, 402.
52. Dai, S.; Li, Y.; Du, Z.; Carter, K. R., Electrochemical deposition of ZnO hierarchical nanostructures from hydrogel coated electrodes. Journal of The Electrochemical Society 2013, 160 (4), D156-D162.
53. Lee, J.; Nam, S. C.; Tak, Y., On the origin of electrodeposition mechanism of ZnO on ITO substrate. Korean Journal of Chemical Engineering 2005, 22 (1), 161-164.
54. Yao, D.; Ou, J.; Latham, K.; Zhuiykov, S.; O’Mullane, A.; Kalantar-zadeh, K., Electrodeposited α- and β-phase MoO3 films and investigation of their gasochromic properties. Crystal Growth & Design 2012, 12, 1865-1870.
55. Richardson, J. J.; Lange, F. F., Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis. Crystal Growth & Design 2009, 9 (6), 2570-2575.
56. Ali, A.; Chiang, Y. W.; Santos, R. M., X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals 2022, 12 (2).
57. Leake, J., Thin film analysis by X-ray scattering. MTL Materials Characterization 2007, 58 (3), 318-318.
58. Abdullah, A.; Mohammed, A., Scanning electron microscopy (SEM): A review. In Proceedings of 2018 International Conference on Hydraulics and Pneumatics-HERVEX, Băile Govora, Romania, 2019.
59. Sharma, S. K.; Verma, S. D.; Latif, U. K.; Kumar, S.; Khan, B. S., Handbook of Materials Characterization. Springer: Berlin, Heidelberg, Germany, 2018.
60. Lavrijsen, R., Another spin in the wall:Domain wall dynamics in perpendicularly magnetized devices. In Eindhoven University of Technology - PhD Thesis Repository, Ipskamp Drukkers B.V.: Netherlands, 2011.
61. Reed, S. J. B., Electron probe microanalysis. In Microprobe Techniques in the Earth Sciences, Potts, P. J.;Bowles, J. F. W.;Reed, S. J. B.;Cave, M. R., Eds. Springer US: Boston, MA, 1995; pp 49-89.
62. Alshamarti, H.; Hassan, J.; Saadon, H., Fabrication and characterization of UV photodetectors based on metal doped and undoped ZnO nanorods. PhD. DPhil. 2019.
63. Rajbongshi, B. M., Photocatalyst: mechanism, challenges, and strategy for organic contaminant degradation. In Handbook of Smart Photocatalytic Materials, Elsevier: Amsterdam, The Netherlands, 2020; pp 127-149.
64. Yadav, V.; Verma, P.; Sharma, H.; Tripathy, S.; Saini, V. K., Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism. Environ. Sci. Pollut. Res. 2020, 27 (10), 10966-10980.
65. P V R K, R.; Abbas, S. J.; Sahoo, S.; Ke, S.-C., Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systems. Catal. Sci. Technol. 2018, 8.
66. Shaoqing, Y.; Jun, H.; Jianlong, W., Radiation-induced catalytic degradation of p-nitrophenol (PNP) in the presence of TiO2 nanoparticles. Radiation Physics and Chemistry 2010, 79 (10), 1039-1046.
67. Zhou, M.; Lei, L., An improved UV/Fe3+ process by combination with electrocatalysis for p-nitrophenol degradation. Chemosphere 2006, 63 (6), 1032-40.
68. Maleki, A.; Nasseri, S.; Hadi, M.; Solaimany Aminabad, M., Discoloration of aqueous direct Blue 71 solutions using UV/H2O2/Nano-SiO2 process. International Journal of Environmental Research 2015, 9 (2), 721-734.
69. Kumar, K. V.; Porkodi, K.; Rocha, F., Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications 2008, 9 (1), 82-84.
70. Ahmedzeki, N.; Jendeel, H., Heterogeneously catalyzed esterification reaction: Experimental and modeling using Langmuir- Hinshelwood approach. Iraqi Journal of Chemical and Petroleum Engineering 2013, 14, 45.
71. Kumar, V.; Porkodi, K.; Selvaganapathi, A., Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes and Pigments 2007, 75, 246-249.
72. Kawashima, T.; Ezure, T.; Okada, K.; Matsui, H.; Goto, K.; Tanabe, N., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1-3), 199-202.
73. Krishnan, C.; Garnett, M.; Hsiao, B.; Chu, B., Electrochemical measurements of isopolyoxomolybdates:1. pH dependent behavior of sodium molybdate. International Journal of Electrochemical Science 2007, 2, 29-51.
74. Ait Ahsaine, H.; Zbair, M.; Ezahri, M.; Abdeljalil, B.; Bakiz, B.; Guinneton, F.; Gavarri, J.-R., Structural and temperature-dependent vibrational analyses of the non-centrosymmetric ZnMoO4 molybdate. Journal of Materials and Environmental Science 2016, 7, 907-915.
75. Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin 1968, 3 (1), 37-46.
76. Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie, D. P., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 2015, 252 (8), 1700-1710.
77. Johannes, A.; Pingak, R.; Bukit, M., Tauc plot software: Calculating energy gap values of organic materials based on Ultraviolet-Visible absorbance spectrum. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 823, 012030.
78. Jubu, P. R.; Yam, F. K.; Igba, V. M.; Beh, K. P., Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – a case study of β-Ga2O3. J. Solid State Chem. 2020, 290.
79. Escobedo-Morales, A.; Ruiz, L., II; Ruiz-Peralta, M. D.; Tepech-Carrillo, L.; Sanchez-Cantu, M.; Moreno-Orea, J. E., Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 2019, 5 (4), e01505.
80. Ha Pham, T. T.; Vu, X. H.; Dien, N. D.; Trang, T. T.; Kim Chi, T. T.; Phuong, P. H.; Nghia, N. T., Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC. Adv. 2022, 12 (13), 7850-7863.
81. Naseer, S.; Aamir, M.; Mirza, M. A.; Jabeen, U.; Tahir, R.; Malghani, M. N. K.; Wali, Q., Synthesis of Ni-Ag-ZnO solid solution nanoparticles for photoreduction and antimicrobial applications. RSC. Adv. 2022, 12 (13), 7661-7670.
82. Sharma, V.; Prasad, M.; Rokade, A.; Ilaiyaraja, P.; Sudakar, C.; Jadkar, S., Ag−Au‐bimetal incorporated ZnO‐nanorods photo‐anodes for efficient photoelectrochemical splitting of water. Energy Technol. 2018, 7 (2), 233-239.
83. Abdullah, H.; Susanto Gultom, N.; Kuo, D. H., Synthesis and characterization of La-doped Zn(O,S) photocatalyst for green chemical detoxification of 4-nitrophenol. J Hazard Mater 2019, 363, 109-118.
84. Abdullah, H.; Siburian, R.; Pasaribu, S. P.; Panggabean, A. S., Visible‐Light Driven Ni‐Incorporated CdS Photocatalytic Activities for Azo‐Bond Cleavages with Hydrogenation Reaction. ChemistrySelect 2021, 6 (9), 2041-2050.
85. Trang, T. N. Q.; Phan, T. B.; Nam, N. D.; Thu, V. T. H., In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H2 Evolution and RhB Degradation. ACS Appl Mater Interfaces 2020, 12 (10), 12195-12206.
86. Mandawat, N. K.; Sharma, H. S.; Chouhan, N., Nanocomposite Ag@AgCl/ZnO for efficient hydrogen generation through water splitting. SN Applied Sciences 2019, 1 (6).
87. Fu, Y.; Xu, P.; Huang, D.; Zeng, G.; Lai, C.; Qin, L.; Li, B.; He, J.; Yi, H.; Cheng, M.; Zhang, C., Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes. Applied Surface Science 2019, 473, 578-588.