| 研究生: |
楊松樺 Yang, Sung-Hua |
|---|---|
| 論文名稱: |
電極模型分析與其自動補償之研究 The Study of Electrode Model Analysis and Its Automated Compensation |
| 指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 電極 、阻抗 、等效電路 、補償 |
| 外文關鍵詞: | Electrode, Impedance, Equivalent circuit, Compensation |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電極主要的功能在於減少人體與電路之間的接觸阻抗,然而電極並非完美的導體,電極與皮膚介面中的阻抗會造成量測結果的偏差,在生醫量測的應用中,若是忽略這些誤差,可能會誤判受測者真實的生理狀況,因此有必要建立一套方法來補償電極所造成的誤差。本研究目的在於建立一套通用的補償流程,讓各種不同的電極都能透過這個流程建立補償電路,消除電極所造成的誤差,增加生醫量測的準確性。實驗結果顯示:同款式的電極之間的阻抗差異程度卻非常大,所以每個電極所造成的扭曲必須透過其對應的補償電路來補償,另外,補償電路在特定的頻帶內能夠精準地補償電極的電容性所造成的扭曲,然而,此電路的實作成果與模擬結果在低頻的部分仍有些微的誤差。
The main function of electrodes is to reduce the contact impedance between human bodies and electric circuits. However, electrodes are not perfect conductors, so the impedance of the skin-electrode interface will distort the measurement results. In biomedical measurement applications, neglecting this distortion can result in misjudgment about the actual physiological condition of subjects. Thus, it is necessary to establish a method to compensate for the distortion caused by electrodes. In this research, we establish a universal process of signal compensation for all types of electrodes. A specific compensation circuit for a certain type of electrode can be established through this process to eliminate the distortion caused by the electrodes and to increase the accuracy of biomedical measurements. The results of this study reveal that there are huge differences between electrodes of the same type, so the distortion caused by electrodes should be addressed on a case-by-case basis. A compensation circuit can accurately compensate for the distortion caused by the capacitance of electrodes in specific frequency bands. However, there remains a slight difference in the frequency response at low frequencies between the simulation and actual circuit.
[1] A. Nait-Ali, Advanced Biosignal Processing. Springer Science & Business Media, 2009.
[2] B. Taji, S. Shirmohammadi, V. Groza, and I. Batkin, “Impact of Skin-Electrode Interface on Electrocardiogram Measurements Using Conductive Textile Electrodes,” IEEE Trans. Instrum. Meas., vol. 63, no. 6, pp. 1412–1422, Jun. 2014.
[3] E. N. Marieb, P. B. Wilhelm, and J. Mallatt, Human Anatomy, Media Update, 6th edition. Boston: Benjamin Cummings, 2012.
[4] J. L. Vargas Luna, M. Krenn, J. A. Cortés Ramírez, and W. Mayr, “Dynamic Impedance Model of the Skin-Electrode Interface for Transcutaneous Electrical Stimulation,” PLoS ONE, vol. 10, no. 5, p. e0125609, May 2015.
[5] “The Electrical Double Layer and Its Structure,” Scribd. [Online]. Available: https://www.scribd.com/doc/23724566/The-Electrical-Double-Layer-and-Its-Structure. [Accessed: 03-Jan-2016].
[6] S. Grimnes and Ø. G. Martinsen, Bioimpedance and Bioelectricity Basics. Academic Press, 2000.
[7] A. F. Silva, Trends in Interfacial Electrochemistry. Springer Science & Business Media, 1986.
[8] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, 2000.
[9] C. M. A. Brett and A. M. O. Brett, Electrochemistry: Principles, Methods, and Applications. Oxford University Press, 1993.
[10] R. Parsons, “The electrical double layer: recent experimental and theoretical developments,” Chem. Rev., vol. 90, no. 5, pp. 813–826, Jul. 1990.
[11] G. K. Johnsen, C. A. Lütken, Ø. G. Martinsen, and S. Grimnes, “Memristive model of electro-osmosis in skin,” Phys. Rev. E, vol. 83, no. 3, p. 031916, Mar. 2011.
[12] W. Franks, I. Schenker, P. Schmutz, and A. Hierlemann, “Impedance characterization and modeling of electrodes for biomedical applications,” IEEE Trans. Biomed. Eng., vol. 52, no. 7, pp. 1295–1302, Jul. 2005.
[13] H. P. Schwan, “Electrode Polarization Impedance and Measurements in Biological Materials*,” Ann. N. Y. Acad. Sci., vol. 148, no. 1, pp. 191–209, Feb. 1968.
[14] S. Grimnes, “Skin impedance and electro-osmosis in the human epidermis,” Med. Biol. Eng. Comput., vol. 21, no. 6, pp. 739–749, Nov. 1983.
[15] N. Meziane, J. G. Webster, M. Attari, and A. J. Nimunkar, “Dry electrodes for electrocardiography,” Physiol. Meas., vol. 34, no. 9, p. R47, 2013.
[16] J. G. Webster, Medical Instrumentation Application and Design, 4th Edition edition. Hoboken, NJ: John Wiley & Sons, 2009.
[17] Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, “Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review,” Biomed. Eng. IEEE Rev. In, vol. 3, pp. 106–119, 2010.
[18] D. A. Neamen, Microelectronics: Circuit Analysis and Design. McGraw-Hill, 2010.
[19] C. Alexander and M. Sadiku, Fundamentals of Electric Circuits. McGraw-Hill Education, 2016.
[20] W.-K. Chen, Fundamentals of Circuits and Filters. CRC Press, 2009.
[21] F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th edition. Hoboken, NJ: Wiley, 2009.
[22] C. Kitchin, “The right way to use instrumentation amplifiers,” EDN. [Online]. Available: http://www.edn.com/design/analog/4322833/The-right-way-to-use-instrumentation-amplifiers. [Accessed: 21-Feb-2016].
[23] Analog Devices, “AD5933 Data Sheet.” Analog Devices, May-2013.
[24] L. Matsiev, “Improving Performance and Versatility of Systems Based on Single-Frequency DFT Detectors Such as AD5933,” Electronics, vol. 4, no. 1, pp. 1–34, Dec. 2014.
[25] C. Margo, J. Katrib, M. Nadi, and A. Rouane, “A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip,” Physiol. Meas., vol. 34, no. 4, p. 391, 2013.
[26] F. Seoane, J. Ferreira, J. J. Sanchéz, and R. Bragós, “An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications,” Physiol. Meas., vol. 29, no. 6, p. S267, 2008.
[27] C. Y. Chen, “The Design of Multi-Frequency Bioimpedance Measuring System for Clinical Applications,” Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2007.
[28] J. Ferreira, F. Seoane, A. Ansede, and R. Bragos, “AD5933-based spectrometer for electrical bioimpedance applications,” J. Phys. Conf. Ser., vol. 224, no. 1, p. 012011, 2010.
[29] S. Park, J.-J. Lee, C.-B. Yun, and D. J. Inman, “Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k-means Clustering Algorithms,” J. Intell. Mater. Syst. Struct., vol. 19, no. 4, pp. 509–520, Apr. 2008.
[30] Analog Devices, “AD5933 Evaluation Board User Guide.” Analog Devices, Feb-2012.
校內:立即公開