| 研究生: |
吳國鈞 Wu, Kuo-Chun |
|---|---|
| 論文名稱: |
具全周期電流偵測之平均電流模式升-降壓型直流-直流轉換器 Average-Current-Mode Buck-Boost DC-DC Converter with Full-Wave Current Sensor |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 平均電流模式 、升降壓 、直流-直流轉換器 、電流偵測 |
| 外文關鍵詞: | average-current-mode, buck-boost, DC-DC converter, current sensing |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今社會可攜式電子產品蓬勃發展,如何延長電子產品的使用時間已成為一個重要的議題。由於電池的輸出電壓通常會隨著時間下降(以鋰電池為例:其輸出電壓於2.7 V~4.2 V之間),電壓可能比電子產品所需要的電壓高或低(例如,3.3V)。因此,採用非反向升降壓型直流-直流轉換器即可完整利用電池輸出電壓範圍。本論文將介紹一個以平均電流模式控制之非反向升降壓型直流-直流轉換器,有高的轉換效率、快速的暫態響應、以及良好的抗雜訊能力。另外,本論文提出一改良的電感電流偵測電路,能減少感測訊號的雜訊以提升系統穩定性。
此晶片使用台灣積體電路公司0.35μm 2P4M 5V混合訊號製程,尺寸為2.3×1.86mm2。於輸入電為2.5~5V、輸出負載電流為50~300mA時,輸出電壓均可穩定於3.3V。
Due to the growth of consumer electronics market, there are more and more studies in energy saving to prolong service life of electronic products. Because the output voltage of batteries decreases with time (e.g., Li-ion: 2.7–4.2 V), it may be higher or lower than the required supply voltage (e.g., 3.3V). To use the entire battery output voltage range, a non-inverting buck-boost dc-dc converter is a good choice. In this work, an average-current-mode non-inverting buck-boost dc-dc converter with the advantages of high power efficiency, faster transient response, and excellent noise immunity is introduced. Furthermore, a novel current sensing scheme, which can reduce noise and then improve system stability, is proposed.
The die area of this chip is 2.3x1.86 , which is fabricated by using Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm 2P4M 5V mixed-signal polycide process. The converter output is regulated to 3.3V, when the loading current is 50 mA to 300 mA and the input voltage is 2.5V to 5V.
[1] C.-H. Chen, “Average-current-mode non-inverting buck-boost dc-dc Converter,” M.S. thesis, Dept. Elect. Eng., National Chen Kung Univ., Tainan, Taiwan, R.O.C, Jul. 2010.
[2] I-T. Ko, “Synchronous-switch average-current-mode buck-boost dc-dc converter.” M.S. thesis, Dept. Elect. Eng., National Chen Kung Univ., Tainan, Taiwan, R.O.C, Jul. 2011.
[3] B. Sahu, and G. A. Rincón-Mora, “A low voltage, dynamic, noninverting , synchronous buck-boost converter for portable applications,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443–452, 2004.
[4] L. H. Dixon, “Average current-mode control of switching power supplies,” Unitrode power supply design seminar manual, 1990.
[5] C. F. Lee, and P. K. T. Mok, “A monolithic current-mode CMOS dc–dc converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, 2004.
[6] B. Sahu, “Integrated, dynamically adaptive supplies for linear RF power amplifiers in portable applications,” doctoral dissertation, Georgia Institute of Technology, 2004.
[7] P. C. Huang, W. Q. Wu, H. H. Ho, K. H. Chen, and G. K. Ma, “High efficiency buck-boost converter with reduced average inductor current (RAIC) technique,” in Conferences proceedings of ESSCIRC’09, pp. 456–459, 2009.
[8] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter,” IEEE Power electronics letters, vol. 2, no. 4, Dec. 2004.
[9] Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck–boost converter,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1116, 2009.
[10] J. Sun and R. M. Bass. “Modeling and practical design issues for average current control,” HApplied power electronics conference and expositionH, vol. 2, pp. 980–986, 1999.
[11] W. Tang, F. C. Lee, and R. B. Ridley, “Small-signal modeling of average current-mode control,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 112–119, 1993.
[12] H. Y. H. Lam, W.H. Ki and D. Ma, “Loop gain analysis and development of high–speed high–accuracy current sensors for switching converters,” in 2004 IEEE Int. Symp. Circuits Syst., vol. 5, pp. 828–831.
[13] J. A. Morales-Saldana, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M. G. Ortiz-Lopez, “Average current-mode control scheme for a quadratic buck converter with a single switch,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 485–490, 2008.
[14] C. Zheng and D. Ma, “A 10MHz 92.1%-efficiency green-mode automatic reconfigurable switching converter with adaptively compensated single-bound hysteresis control,” in IEEE International solid-state circuits conference, p204-205, 2010.
[15] B. Sahu and G. A. Rincon-Mora, “A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications,” in 2005 18th international conference on VLSI Design, pp. 858–861.
[16] P.-C. Huang, W.-Q. Wu, H.-H. Ho, and K.-H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 719–730, Mar. 2010.
[17] J.-J. Chen, P.-N. Shen, and Y.-S. Hwang, “A high-efficiency positive buck–boost converter with mode-select circuit and feed-forward techniques,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4240–4247, Sep. 2013.
[18] Y.-H. Lee, S.-C. Huang, S.-W. Wang, W.-C. Wu, P.-C. Hung, H-.H Ho, Y.-T. Lai, and K.-H. Chen, “Power-tracking embedded buck-boost converter with fast dynamic voltage scaling for SoC sytem,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1002–1116, Dec. 2010.
校內:2018-08-28公開