簡易檢索 / 詳目顯示

研究生: 張家寧
Chang, Chia-Ning
論文名稱: 永磁同步馬達軸承電流之抑制研究
A Study on Suppression of Bearing Current for PM Synchronous Motor
指導教授: 謝旻甫
Hsieh, Min-Fu
共同指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 軸承電流軸電壓共模電壓空間向量脈寬調變
外文關鍵詞: bearing current, shaft voltage, common mode voltage, SVPWM
相關次數: 點閱:141下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬達運轉時,其內部可能因為共模雜訊等原因發生放電現象,此時流經軸承的電流便稱為軸承電流,此電流可能造成軸承的損壞。本文針對軸承電流之現象與發生原因進行探討,並分析現有軸承電流之抑制方法,其中在不更動硬體僅修改開關切換方式的抑制方法中,基於現有的空間向量脈波寬度調變(Space Vector Pulse Width Modulation , SVPWM)技術,提出一種新的混合切換式PWM來抑制局部的共模電壓進而降低軸承電流發生率,並以模擬與實驗驗證之。結果顯示混合切換式PWM確實能將局部的共模電壓抑制到傳統SVPWM的三分之一與兩相調變的二分之一,並在低共模區維持軸電壓波形的完整性、減少軸承電流整體發生率。

    This research focuses on the suppression of bearing current for permanent magnet (PM) synchronous motors, which is caused by the common mode voltage of a pulse width modulation (PWM) inverter. Firstly, the causes of bearing current and some conventional suppression methods are investigated. Then, a new hybrid-switching PWM method is proposed, which is verified to successfully reduce the common mode voltage to one-third of the conventional space vector PWMs (SVPWMs) and half of two-phase modulation SVPWMs. The overall probability of bearing current is reduced without changing the design of the hardware.

    中文摘要 I Extended Summary II 致謝 XI 目錄 XIII 表目錄 XV 圖目錄 XVI 符號表 XX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 軸承電流的相關研究回顧 4 2.1 軸承電流發生原因 4 2.2 電壓型PWM變頻器之共模電壓 10 2.3現行軸承電流抑制方法 17 第三章 空間向量脈寬調變與軸承電流抑制 28 3.1傳統SVPWM 28 3.2兩相調變SVPWM 35 3.3 AZSPWM 37 3.4 本文提出之混合切換式PWM 38 第四章 模擬與實驗 41 4.1 待測馬達規格說明與雜散電容模型建置 41 4.2 MATLAB/Simulink用於各切換方法之模擬 47 4.3 實驗與量測 56 4.4 結果討論 68 第五章 結論與未來建議 71 5.1結論 71 5.2未來研究建議 72 參考文獻 73

    [1] ABB drives, “Technical Guide No.5 Bearing Currents in Modern AC Drive Systems,” 2011.
    [2] P.L. ALGER and H.W. SAMSON, “Shaft Current in Electric Machines,” A.I.E.E, 1927.
    [3] S. Chen, T. A. Lipo and D. Fitzgerald, “Modeling of Motor Bearing Currents in PWM Inverter Drives,” IEEE Transations on Industry Applications, Vol. 32, No. 6, November/December 1995.
    [4] S. Chen, D. Fitzgerald and T. A. Lipo, “Source of Induction Motor Bearing Currents Caused by PWM Inverters,” IEEE Energy Conversion, Vol.11, No.1, March 1995.
    [5] D. Busse, J. Erdman, R. J. Kerkman,D. Schlegel, and G. Skibinski, “Bearing Currents and Their Relationship to PWM Drives,” IEEE Transations on Power Electronics, Vol. 12, No. 2, March 1997.
    [6] D. Busse, J. Erdman, R. J. Kerkman, D. Schlegel, and G. Skibinski, “System Electrical Parameters and Their Effects on Bearing Currents,” IEEE Transations on Industry Applications, Vol. 33, No. 2, March/April 1997.
    [7] 奥山吉彦・藤井秀樹:「インバータ駆動誘導電動機の軸電圧」, 富士時報, Vol.72, No.2 (1999)
    [8] R. Schiferl and M. Melfi, “Bearing Current Problems: Causes, Symptoms, and solutions,” Electrical Construction and Maintenance, 2004.
    [9] 野口昭治・赤松洋孝:「小型ベアリングの電食に関する研究」, 2006年度精密工学会春季大会学術講演会講演論文集(2006)
    [10] AEGIS:「技術コラム(3)最新の電食対策をご紹介」,(2013)
    [11] A. Muetze and A. Binder, “Techniques for Measurement of Parameters Relative to Inverter-induced Bearing Currents,” IEEE Transactions on Industry Applications, Vol. 43, No.5, 2007.
    [12] 蔡明村等人,「變頻器共模電壓抑制策略與電磁干擾問題之研究」,南台科技大學電機系,西元2003年。
    [13] 蔡明村等人,「變頻器高共模雜訊對馬達與周圍敏感設備影響之研究」,南台科技大學電機系,西元2001年。
    [14] 謝宏周,「變頻器之共模雜訊分析及其抑制技術研究」,財團法人車輛研究測試中心。
    [15] A. Muetze and H.W. Oh, “Application of Static Charge Dissipation to Mitigate Electric Discharge Bearing Currents,” IEEE Transactions on Industry Applications, Vol. 44, No.1, 2008.
    [16] SKF絕緣軸承,INSOCOAT系列
    [17] SKF混合陶瓷軸承,HC5C3系列
    [18] 電気学会技術報告287号:「インバータ駆動誘導電動機の技術的諸問題」 (1988)
    [19] 福田交易株式會社:「AEGIS SGR」 (2014)
    [20] D. F. Busse, M. E. Erdman, R. J. Kerkman, D. W. Schlegel, and G. L. Skibinski, “An Evaluation of the Electrostatic Shielded Induction Motor: a Solution for Rotor Shaft Voltage Buildup and Bearing Current,” IEEE Transactions on Industry Applications, Vol. 33, No. 6 ,1997
    [21] 延昇,「變頻器相關的問與答(39)」,電機月刊,第九卷,第十一期,1999年11月。
    [22] 前谷達男:「PWMインバータか駆動ブラシレスDCモータのベアリング電食に関する研究」,大阪府立大学 (2013)
    [23] 磯村宜典:「空調用ファンモータのベアリンク電食に関する研究」,鹿児島大学 (2014)
    [24] D. C. Ludois and J. K. Reed, “Brushless Mitigation of Bearing Currents in Electric Machines Via Capacitively Coupled Shunting,” IEEE Transactions on Industry Applications, 2014.
    [25] B. Bai, Y. Wang, and X.Wang, “Suppression for Discharging Bearing Current in Variable-Frequency Motors Based on Electromagnetic Shielding Slot Wedge,” IEEE Transacions on Magnetics, 2014.
    [26] A.L. Julian, G. Oriti and T.A. Lipo,“Elimination of Common-mode Voltage in Three-phase Sinusoidal Power Converters,” IEEE Transactions on Power Electronics , September. 1999.
    [27] S. Ogasawara, H. Ayano, H. Akagi,“An Active Circuit for Cancellation of Common-mode Voltage Generated by a PWM Inverter,” IEEE Transactions on Power Electronics, September. 1998.
    [28] 吳峻仲,「變頻器驅動對交流馬達軸電流改善之研究」,逢甲大學,西元2008年。
    [29] C. R. Paul,“Introduction to Electromagnetic Compatibility,” John Wiley&Sons, 1992.
    [30] 許溢适,劉昌煥,「AC伺服系統的理論與設計實務」,第四版,文笙書局,西元1999年。
    [31] 陳泰羽,「兩相調變之向量控制永磁同步馬達驅動器的研製」,臺北科技大學,西元2011年。
    [32] 陳景熙,元鵬,周璟,張凱,「一種低共模電磁干擾SVPWM法的研究」,高電壓技術,西元2008年。
    [33] A. M. Hava,“A High-Performance PWM Algorithm for Common-Mode Voltage Reduction in Three-Phase Voltage Source Inverters,” IEEE Transactions on Power Electronics, Vol. 26, No. 7, July 2011.
    [34] A. M. Hava,“Performance Analysis of Reduced Common-Mode Voltage PWM Methods and Comparison With Standard PWM Methods for Three-Phase Voltage-Source Inverters,” IEEE Transactions on Power Electronics, Vol. 24, No. 1, January 2009.
    [35] Y. S. Lai and F. S. Shyu, “Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects Part I: Basic development,” IEEE Transations on Industry Applications, Vol. 40, No. 6, November/December 2003.
    [36] K. S. Narayana, A. K. Rao, and K. Satyanarayana, “Novel AZSPWM algorithms based VCIMD for reduced CMV variations,” International Journal of Power Electronics and Drive Systems, Vol. 3, No. 1, March. 2013
    [37] A. M. Hava, and N. O. Çetin, “A Generalized Scalar PWM Approach With Easy Implementation Features for Three-Phase, Three-Wire Voltage-Source Inverters,” IEEE Transactions on Power Electronics, Vol. 26, No. 5, May 2011.
    [38] K.Y. Chen and M.S. Hsieh, “Generalized Minimum Common-Mode Voltage PWM for Two-Level Multiphase VSIs Considering Reference Order, ” IEEE Transavtions on Power Electronics, Vol. 32, No. 8, August 2017.
    [39] Microchip, “dsPIC30F Family Reference Manual,” 2003.
    [40] Microchip, “dsPIC30F4011/4012 Data Sheet,” 2010.

    下載圖示 校內:2022-08-28公開
    校外:2022-08-28公開
    QR CODE