簡易檢索 / 詳目顯示

研究生: 林冠陞
Lin, Kuan-Sheng
論文名稱: 探討銀/二氧化錫薄膜之光催化降解甲基橙
Study of silver/tin oxide thin film for photocatalytic degradation of methyl orange
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 電沉積二氧化錫光還原光催化甲基橙
外文關鍵詞: electrodeposition, tin oxide, photoreduction, silver, photocatalysis, methyl orange
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電沉積法,在FTO導電玻璃上製備二氧化錫薄膜,透過不同的製備條件,分別為:沉積電位、硝酸濃度、沉積溫度、沉積時間及退火溫度,尋求二氧化錫薄膜光催化降解甲基橙之最佳化條件。再來利用光還原法 (Photoreduction method) 沉積銀在二氧化錫表面上,在光還原法中,藉由控制硝酸銀濃度與照光時間,找出銀/二氧化錫 (修飾銀於二氧化錫表面上) 薄膜光催化降解甲基橙之最佳化條件。
    二氧化錫薄膜、銀/二氧化錫薄膜的性質鑑定,分別經由X射線繞射分析儀 (X-ray diffractometer, XRD) 觀察晶體結構,掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 觀察表面形貌,以及能量分散式光譜分析儀 (Energy dispersive spectrometer, EDS) 進行元素組成分析,使用8 W 254 nm長型紫外光燈作為光源進行光催化降解甲基橙之實驗,並搭配光纖可見光光譜儀測量其吸收值來計算降解率。
    由實驗結果得知,以25 mM 氯化亞錫與100 mM硝酸所組成之電解液,固定沉積電位 -0.8 V、沉積溫度80℃、沉積時間30 mins、無須退火之二氧化錫薄膜光催化甲基橙降解率為38.3%。為了提高二氧化錫薄膜之光催化甲基橙降解率,在二氧化錫表面上修飾銀,其中,光還原銀條件為硝酸銀10 mM,照光時間60 s,銀/二氧化錫薄膜光催化甲基橙降解率提高至49.1%。

    In this work, the fabrication of tin oxide (SnO2) thin film was deposited on fluorine-doped tin oxide (FTO glass) by chronoamperometry. To optimize deposition conditions, different parameters we discussed including the potential of deposition, the concentration of nitric acid, deposition temperature, deposition time and annealing temperature. We discussed the degradation rate by photocatalytic degradation of methyl orange (MO). Photodegradation of MO is using 254 nm UV lamp as a light source. After the reaction, the absorbance of MO was measured by a fiber visible spectrometer to calculate the degradation rate. In addition, to improve the photocatalytic degradation rate of SnO2 thin film, silver was deposited on the surface of SnO2 by the photoreduction method. We control the concentration of silver nitrate and ultraviolet light irradiated time to fabricate Ag/SnO2 thin film. The properties of SnO2 thin film and Ag/SnO2 thin film were characterized by using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Adding silver to the surface of SnO2 thin film can prevent the electron-hole pairs from rapidly recombining. That effectively enhances the degradation rate. Finally, the degradation rate of MO increased from 38.3% to 49.1%.

    摘要 I 致謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XX 第一章 緒論 1 1-1前言 1 1-2偶氮染料 2 1-2-1甲基橙 4 1-3研究動機 5 1-4研究目的 6 第二章 實驗理論 7 2-1光觸媒 7 2-1-1二氧化錫簡介 8 2-2電化學原理 9 2-2-1循環伏安法 9 2-2-2定電位電解法 10 2-3電化學沉積二氧化錫機制 11 2-4退火機制 11 2-5光還原銀機制 12 2-6光催化反應 12 2-6-1二氧化錫光催化機制 12 2-6-2銀/二氧化錫光催化機制 13 2-6-3光催化降解甲基橙 15 第三章 實驗內容 19 3-1實驗藥品及設備 19 3-1-1實驗藥品及材料 19 3-1-2儀器設備 20 3-2實驗流程 21 3-3實驗步驟 22 3-3-1 FTO導電玻璃前處理 22 3-3-2電解液配製 22 3-3-3三電極系統裝置 22 3-3-4光還原溶液配製 24 3-3-5電沉積薄膜製備 24 3-3-6薄膜熱處理 24 3-3-7光還原銀 24 3-3-8光催化降解甲基橙 25 3-4儀器 27 3-4-1 X射線繞射分析儀 27 3-4-2掃描式電子顯微鏡 28 3-4-3能量分散式光譜分析儀 29 3-4-4光纖可見光光譜儀 30 第四章 結果與討論 31 4-1沉積電位對於二氧化錫製備之影響 31 4-1-1二氧化錫循環伏安法分析 31 4-1-2晶體結構鑑定 32 4-1-3表面形貌分析 35 4-1-4光催化效能分析 36 4-2硝酸濃度對於二氧化錫製備之影響 39 4-2-1晶體結構鑑定 39 4-2-2表面形貌分析 41 4-2-3光催化效能分析 43 4-3沉積溫度對於二氧化錫製備之影響 46 4-3-1晶體結構鑑定 46 4-3-2表面形貌分析 48 4-3-3光催化效能分析 50 4-4沉積時間對於二氧化錫製備之影響 53 4-4-1晶體結構鑑定 53 4-4-2表面形貌分析 54 4-4-3光催化效能分析 55 4-5退火熱處理對於二氧化錫製備之影響 59 4-5-1晶體結構鑑定 59 4-5-2表面形貌分析 60 4-5-3光催化效能分析 61 4-5-4最佳化條件之二氧化錫薄膜元素組成分析 63 4-5-5光催化劑與光源之距離 64 4-6銀/氯化銀/二氧化錫光催化劑 66 4-7硝酸銀濃度對於銀/二氧化錫製備之影響 67 4-7-1晶體結構鑑定 67 4-7-2表面形貌分析 67 4-7-3光催化效能分析 68 4-8照光時間對於銀/二氧化錫製備之影響 71 4-8-1晶體結構鑑定 71 4-8-2表面形貌分析 71 4-8-3光催化效能分析 72 4-8-4最佳化條件之銀/二氧化錫薄膜元素組成分析 74 4-8-5銀/二氧化錫光催化降解不同染料 75 4-8-6光催化劑之比較 78 第五章 結論 82 參考文獻 85 附錄 92

    [1] U. Tahir, A. Yasmin, and U. H. Khan, "Phytoremediation: potential flora for synthetic dyestuff metabolism," Journal of King Saud University - Science, vol. 28, pp. 119-130, 2016.
    [2] T. K. Sen, S. Afroze, and H. M. Ang, "Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of pinus radiata," Water, Air, & Soil Pollution, vol. 218, pp. 499-515, 2011.
    [3] A. Bhatnagar and A. K. Jain, "A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water," Journal of Colloid and Interface Science, vol. 281, pp. 49-55, 2005.
    [4] M. K. Sharma and R. C. Sobti, "Rec effect of certain textile dyes in bacillus subtilis," Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 465, pp. 27-38, 2000.
    [5] A. A. Jalil, S. Triwahyono, S. H. Adam, N. D. Rahim, M. A. A. Aziz, N. H. H. Hairom, N. A. M. Razali, M. A. Z. Abidin, and M. K. A. Mohamadiah, "Adsorption of methyl orange from aqueous solution onto calcined lapindo volcanic mud," Journal of Hazardous Materials, vol. 181, pp. 755-762, 2010.
    [6] J. P. V. Hul, I. G. Rácz, and T. Reith, "The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range," Journal of the Society of Dyers and Colourists, vol. 113, pp. 287-294, 1997.
    [7] J. Sun, X. Li, Y. Quan, Y. Yin, and S. Zheng, "Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins," Chemosphere, vol. 136, pp. 181-189, 2015.
    [8] Y. J. Chan, M. F. Chong, C. L. Law, and D. G. Hassell, "A review on anaerobic–aerobic treatment of industrial and municipal wastewater," Chemical Engineering Journal, vol. 155, pp. 1-18, 2009.
    [9] R. Gusain, K. Gupta, P. Joshi, and O. P. Khatri, "Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites : a comprehensive review," Advances in Colloid and Interface Science, vol. 272, p. 102009, 2019.
    [10] P. Bansal, D. Singh, and D. Sud, "Photocatalytic degradation of azo dye in aqueous TiO2 suspension : reaction pathway and identification of intermediates products by LC/MS," Separation and Purification Technology, vol. 72, pp. 357-365, 2010.
    [11] J. P. Silva, S. Sousa, I. Goncalves, J. J. Porter, and S. Ferreira-Dias, "Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains," Separation and Purification Technology, vol. 40, pp. 309-315, 2004.
    [12] J. L. Wang and L. J. Xu, "Advanced oxidation processes for wastewater treatment : formation of hydroxyl radical and application," Critical Reviews in Environmental Science and Technology, vol. 42, pp. 251-325, 2012.
    [13] S. Al-Qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound," Journal of Photochemistry and Photobiology A : Chemistry, vol. 148, pp. 161-168, 2002.
    [14] Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang, and D. D. Dionysiou, "Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW)," Journal of Hazardous Materials, vol. 209-210, pp. 271-277, 2012.
    [15] H. Znad, K. Abbas, S. Hena, and M. R. Awual, "Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media," Journal of Environmental Chemical Engineering, vol. 6, pp. 218-227, 2018.
    [16] H. Hussain, G. Tocci, T. Woolcot, X.Torrelles, C. L. Pand, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, "Structure of a model TiO2 photocatalytic interface," Nature Materials, vol. 16, pp. 461-466, 2017.
    [17] C. A. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, and M. Macías, "ZnO and Pt-ZnO photocatalysts : characterization and photocatalytic activity assessing by means of three substrates," Catalysis Today, vol. 313, pp. 12-19, 2018.
    [18] S. P. Kim, M. Y. Choi, and H. C. Choi, "Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation," Materials Research Bulletin, vol. 74, pp. 85-89, 2016.
    [19] M. Mishra and D.-M. Chun, "α-Fe2O3 as a photocatalytic material : a review," Applied Catalysis A : General, vol. 498, pp. 126-141, 2015.
    [20] I. M. Szilágyi, B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo, A. L. Toth, P. Barayai, and M. Leskela, "WO3 photocatalysts : influence of structure and composition," Journal of Catalysis, vol. 294, pp. 119-127, 2012.
    [21] Z. Li, X. Meng, and Z. Zhang, "Recent development on MoS2-based photocatalysis : a review," Journal of Photochemistry and Photobiology C : Photochemistry Reviews, vol. 35, pp. 39-55, 2018.
    [22] T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrovic, D. Volbers, R. Wyrwich, M. Doblinger, A. S. Susha, A. L. Rogach, F. Jackel, J. K. Stolarczyk, and J. Feilmann, "Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods," Nature Materials, vol. 13, pp. 1013-1018, 2014.
    [23] E. Abdelkader, L. Nadjia, B. Naceur, and B. Noureddine, "SnO2 foam grain-shaped nanoparticles : synthesis, characterization and UVA light induced photocatalysis," Journal of Alloys and Compounds, vol. 679, pp. 408-419, 2016.
    [24] K. Rajeshwar, N. R. D. Tacconi, and C. R. Chenthamarakshan, "Semiconductor-based composite materials :  preparation, properties, and performance," Chemistry of Materials, vol. 13, pp. 2765-2782, 2001.
    [25] R. Shyamala and L. N. G. Devi, "Surface plasmon resonance effect of Ag metallized SnO2 particles : exploration of metal induced gap states and characteristic properties of ohmic junction," Surface and Interface Analysis, vol. 52, pp. 374-385, 2020.
    [26] K. Yin, M. Shao, Z. Zhang, and Z. Lin, "A single-source precursor route to Ag/SnO2 heterogeneous nanomaterials and its photo-catalysis in degradation of conco red," Materials Research Bulletin, vol. 47, pp. 3704-3708, 2012.
    [27] K. Sato, Y. Yokoyama, J.-C. Valmalette, K. Kuruma, H. Abe, and T. Takarada, "Hydrothermal growth of tailored SnO2 nanocrystals," Crystal Growth & Design, vol. 13, pp. 1685-1693, 2013.
    [28] Y. Liang and B. Fang, "Hydrothermal synthesis of SnO2 nanorods : morphology dependence, growth mechanism and surface properties," Materials Research Bulletin, vol. 48, pp. 4118-4124, 2013.
    [29] G. Xi, Y. He, Q. Zhang, H. Xiao, X. Wang, and C. Wang, "Synthesis of crystalline microporous SnO2 via a surfactant-assisted microwave heating method : a general and rapid method for the synthesis of metal oxide nanostructures," The Journal of Physical Chemistry C, vol. 112, pp. 11645-11649, 2008.
    [30] F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, "Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method," The Journal of Physical Chemistry B, vol. 108, pp. 8119-8123, 2004.
    [31] S. Sun, G. Meng, G. Zhang, J.-P. Masse, and L. Zhang, "Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process," Chemistry – A European Journal, vol. 13, pp. 9087-9092, 2007.
    [32] 王宇暉,徐高田, "「光觸媒技術的發展與應用」", 化學工程師, 第4卷, 第1002頁, 2004.
    [33] W. Wu, C. Jiang, and V. A. L. Roy, "Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts," Nanoscale, vol. 7, pp. 38-58, 2015.
    [34] F. R. Messias, L. V. A. Scalvi, M. S. Li, C. V. Santilli, and S. H. Pulcinelli, "Oxygen related defects excitation and photoconductivity dependence of SnO2 sol-gel films with several light sources," Radiation Effects and Defects in Solids, vol. 150, pp. 391-395, 1999.
    [35] M. Batzill and U. Diebold, "The surface and materials science of tin oxide," Progress in Surface Science, vol. 79, pp. 47-154, 2005.
    [36] K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, and A. Slaoui, "Optical and structural properties of Nd doped SnO2 powder fabricated by the sol–gel method," Journal of Materials Chemistry C, vol. 2, pp. 8235-8243, 2014.
    [37] Y. Fukai, Y. Kondo, S. Mori, and E. Suzuki, "Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length," Electrochemistry Communications, vol. 9, pp. 1439-1443, 2007.
    [38] K. Tennakone and J. Bandara, "Photocatalytic activity of dye-sensitized tin (IV) oxide nanocrystalline particles attached to zinc oxide particles : long distance electron transfer via ballistic transport of electrons across nanocrystallites," Applied Catalysis A : General, vol. 208, pp. 335-341, 2001.
    [39] D. Zhao and X. Wu, "Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification," Materials Letters, vol. 210, pp. 354-357, 2018.
    [40] C. Singhal, N. Malhotra, C. S. Pundir, Deepshikha, and J. Narang, "An enzyme free vitamin C augmented sensing with different ZnO morphologies on SnO2/F transparent glass electrode : a comparative study," Materials Science and Engineering : C, vol. 69, pp. 769-779, 2016.
    [41] H. Yu, S. Wang, C. Xiao, B. Xiao, P. Wang, Z. Li, and M. Zhang, "Enhanced acetone gas sensing properties by aurelia-like SnO2 micro-nanostructures," CrystEngComm, vol. 17, pp. 4316-4324, 2015.
    [42] Y. Wang, X. Jiang, and Y. Xia, "A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions," Journal of the American Chemical Society, vol. 125, pp. 16176-16177, 2003.
    [43] M. Dou and C. Persson, "Comparative study of rutile and anatase SnO2 and TiO2 : band-edge structures, dielectric functions, and polaron effects," Journal of Applied Physics, vol. 113, p. 083703, 2013.
    [44] T. Entradas, J. F. Cabrita, S. Dalui, M. R. Nunes, O. C. Monteiro, and A. J. Silvestre, "Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties," Materials Chemistry and Physics, vol. 147, pp. 563-571, 2014.
    [45] M. Batzill, J. Kim, D. E. Beck, and B. E. Koel, "Epitaxial growth of tin oxide on Pt(111) : structure and properties of wetting layers and SnO2 crystallites," Physical Review B, vol. 69, p. 165403, 2004.
    [46] A. J. Bard and L. R. Faulkner, "Electrochemical methods : fundamentals and applications," 2nd edition, John Wiley & Sons, Inc., New York, 2001.
    [47] M. H. F. Taha, H. Ashraf, and W. Caesarendra, "A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes," Applied System Innovation, vol. 3, 2020.
    [48] G. H. A. Therese and P. V. Kamath, "Electrochemical synthesis of metal oxides and hydroxides," Chemistry of Materials, vol. 12, pp. 1195-1204, 2000.
    [49] J.-Y. Chen, C.-C. Chueh, Z. Zhu, W.-C. Chen, and A. K. Y. Jen, "Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 164, pp. 47-55, 2017.
    [50] H. Wang and W. Li, "Photochemical preparation of Ag/SnO2 composites and their photocatalytic properties," Proceedings of the International Conference on Chemical, Material and Food Engineering, pp. 318-321, 2015.
    [51] A. M. Al-Hamdi, U. Rinner, and M. Sillanpää, "Tin dioxide as a photocatalyst for water treatment : A review," Process Safety and Environmental Protection, vol. 107, pp. 190-205, 2017.
    [52] D. Lin, H. Wu, R. Zhang, and W. Pan, "Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers," Chemistry of Materials, vol. 21, pp. 3479-3484, 2009.
    [53] V. Subramanian, E. E. Wolf, and P. V. Kamat, "Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the fermi level equilibration," Journal of the American Chemical Society, vol. 126, pp. 4943-4950, 2004.
    [54] R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, "Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles," ACS Nano, vol. 6, pp. 6284-6292, 2012.
    [55] M. Scarisoreanu,A. G. Ilie, E. Goncearenco, A. M. Banici, I. P. Morjan, E. Dutu, E. Tanasa, I. Fort, M. Stan, C. N. Mihailescu, and C. Fleaca, "Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV & vis photocatalytic water treatment," Applied Surface Science, vol. 509, p. 145217, 2020.
    [56] J. He, P. Yang, H. Sato, Y. Umemura, and A. Yamagishi, "Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets," Journal of Electroanalytical Chemistry, vol. 566, pp. 227-233, 2004.
    [57] X. Wang, H. Fan, and P. Ren, "Self-assemble flower-like SnO2/Ag heterostructures : correlation among composition, structure and photocatalytic activity," Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol. 419, pp. 140-146, 2013.
    [58] V. Subramanian, E. E. Wolf, and P. V. Kamat, "Green emission to probe photoinduced charging events in ZnO−Au nanoparticles. charge distribution and fermi-level equilibration," The Journal of Physical Chemistry B, vol. 107, pp. 7479-7485, 2003.
    [59] M. Sun, Q. Zhao, X. Liu, C. Du, and Z. Liu, "Comparative study on sandwich-structured SiO2@Ag@SnO2 and inverse SiO2@SnO2@Ag : key roles of shell ordering and interfacial contact in modulating the photocatalytic properties," RSC Advances, vol. 5, pp. 81059-81068, 2015.
    [60] J. Han, H.-Y. Zeng, S. Xu, C.-R. Chen, and X.-J. Liu, "Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange," Applied Catalysis A : General, vol. 527, pp. 72-80, 2016.
    [61] H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim, H.-S. Yoon, and S.-C. Jung, "Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect," Journal of Industrial and Engineering Chemistry, vol. 35, pp. 205-210, 2016.
    [62] F. Mousli, A. Chaouchi, M. Jouini, F. Maurel, A. Kadri, and M. M. Chehimi, "Polyaniline-grafted RuO2-TiO2 heterostructure for the catalysed degradation of methyl orange in darkness," Catalysts, vol. 9, 2019.
    [63] J.-M. Herrmann, "Heterogeneous photocatalysis : fundamentals and applications to the removal of various types of aqueous pollutants," Catalysis Today, vol. 53, pp. 115-129, 1999.
    [64] D. F. Ollis, "Kinetics of liquid phase photocatalyzed reactions :  an illuminating approach," The Journal of Physical Chemistry B, vol. 109, pp. 2439-2444, 2005.
    [65] F. I. Chowdhury, T. Blaine, and A. B. Gougam, "Optical transmission enhancement of fluorine doped tin oxide (FTO) on glass for thin film photovoltaic applications," Energy Procedia, vol. 42, pp. 660-669, 2013.
    [66] C. V. Stan, C. M. Beavers, M. Kunz, and N. Tamura, "X-Ray diffraction under extreme conditions at the advanced light source," Quantum Beam Science, vol. 2, 2018.
    [67] M. T. Doménech-Carbó and L. Osete-Cortina, "Another beauty of analytical chemistry : chemical analysis of inorganic pigments of art and archaeological objects," ChemTexts, vol. 2, p. 14, 2016.
    [68] C. O. Colpan, Y. Nalbant, and M. Ercelik, "4.28 Fundamentals of fuel cell technologies," Comprehensive Energy Systems, pp. 1107-1130, 2018.
    [69] F. A. Cataño, G. Caceres, A. Burgos, and R. S. Schrebler "Synthesis and characterization of a ZnO/CuO/Ag composite and its application as a photocatalyst for methyl orange degradation," International Journal of Electrochemical Science, pp. 9242-9256, 2018.
    [70] Y. Ling, G. Wang, T. Chen, X. Fei, S. Hu, Q. Shan D. Hei, H. Feng, and W. Jia, "Irradiation-catalysed degradation of methyl orange using BaF2–TiO2 nanocomposite catalysts prepared by a sol–gel method," Royal Society Open Science, vol. 6, p. 191156, 2019.
    [71] Q. Zhu, N. Liu, N. Zhang, Y. Song, M. S. Stanislaus, C. Zhao, and Y. Yang, "Efficient photocatalytic removal of RhB, MO and MB dyes by optimized Ni/NiO/TiO2 composite thin films under solar light irradiation," Journal of Environmental Chemical Engineering, vol. 6, pp. 2724-2732, 2018.
    [72] M. Ge, N. Zhu, Y. Zhao, J. Li, and L. Liu, "Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension," Industrial & Engineering Chemistry Research, vol. 51, pp. 5167-5173, 2012.
    [73] S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, and M. H. Cho, "Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm," RSC Advances, vol. 4, pp. 26013-26021, 2014.
    [74] L. R. Hou, L. Lian, L. Zhou, L. H. Zhang, and C. Z. Yuan, "Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange," Materials Research Bulletin, vol. 60, pp. 1-4, 2014.
    [75] T. Kim, V. G. Parale, H.-N.-R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, and H.-H. Park, "Facile synthesis of SnO2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange," Nanomaterials, vol. 9, 2019.
    [76] M. A. Ahmed, M. F. A. Messih, E. F. El-Sherbeny, S. F. El-Hafez, and A. M. M. Khalifa, "Synthesis of metallic silver nanoparticles decorated mesoporous SnO2 for removal of methylene blue dye by coupling adsorption and photocatalytic processes," Journal of Photochemistry and Photobiology A : Chemistry, vol. 346, pp. 77-88, 2017.
    [77] T. Sinha, M. Ahmaruzzaman, P. P. Adhikari, and R. Bora, "Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent," ACS Sustainable Chemistry & Engineering, vol. 5, pp. 4645-4655, 2017.
    [78] B. Babu, M. Cho, C. Byon, and J. Shim, "One pot synthesis of Ag-SnO2 quantum dots for highly enhanced sunlight-driven photocatalytic activity," Journal of Alloys and Compounds, vol. 731, pp. 162-171, 2018.

    無法下載圖示 校內:2026-08-16公開
    校外:2026-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE