簡易檢索 / 詳目顯示

研究生: 張凱璿
Chang, Kai-Hsuan
論文名稱: 應用於晶片系統之數位低壓降穩壓器研究與設計
Study and Design of Digital Low-Dropout Regulator for SoC Application
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 晶片系統應用無外掛電容型低壓降穩壓器數位控制雙迴路數位低壓降穩壓器快速暫態響應動態電流源陣列
外文關鍵詞: System on chip, Capacitor-less low dropout regulator, Digital control, Dual-loop DLDO, Fast transient response, Dynamic current source array
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將近年來學術界對數位式低壓降穩壓器之研究進行整理。首先,了解數位式低壓降穩壓器的應用範圍及基本動作原理。第二,利用系統模型建立一套穩定度設計流程,確保系統的穩定性。第三,整理相關晶片系統應用之研究議題,並探討問題原因。最後,整理近年來關於晶片系統應用的研究文獻,探討目前研究文獻的發展趨勢。
    另外,針對晶片系統(SoC)應用,本論文提出具動態電流源陣列之數位雙迴路低壓降穩壓器,其架構能有效地抑制因負載暫態響應所造成的壓差(Over/Undershoot),並能大幅減少on-chip電容的使用。並且本論文將傳統的數位控制器加以改良,透過加入set/reset控制機制來加速暫態發生後,輸出電壓的回復時間。
    本作品使用TSMC 0.18um 1.8V/3.3V 1P6M Mixed Signal製程進行實現。輸入電壓為1.8V、輸出電壓1.2V、最大負載電流30mA、輸出端on-chip電容50pF,在負載電流抽載範圍0.6m-30mA的情況下,Post-sim模擬結果:輸出電壓回穩時間小於150ns,暫態電壓overshoot/undershoot大小分別為18mV/300mV。

    In this thesis, we study and design the digital low dropout regulater (DLDO) for system on chip application, and the DLDO is compared with analog low dropout regulater (ALDO). In addition, We discuss the effects of system stability and transient performance by the DLDO system parameters, then propose a system stability design flow by MATLAB SISOtool. It can help the designer to choose system parameters of DLDO to meet the system stability and transient performance.
    Finally, we survey the papers of capacitor-less DLDO about fast transient technique and discuss the advantage. And we accomplished a dual-loop capacitor-less DLDO using dynamic current source array and set/reset control bidirectional shift register. The output capacitor less than 50pF and improve transient performance are our target. The proposed dynamic current source array technique can achieve the design target without any passive components. The chip was manufactured by TSMC 0.18-μm 1P6M. The load current range from 0.6mA to 30mA. In transient response, the dynamic current source array technique can reduce over-shoot from 500mV to 180mV and under-shoot from 600mV to 200mV. Besides, the set/reset control bidirectional shift register technique can improve setting time from 1.1μs to 200ns.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 目標與貢獻 3 1.3 論文架構簡介 4 第二章 類比式低壓降穩壓器 5 2.1 傳統外掛電容型低壓性穩壓器 5 2.1.1 架構及原理 5 2.1.2 穩定度分析 7 2.1.3 規格特性 10 2.2 無外掛電容型低壓降穩壓器 16 2.2.1 架構及原理 16 2.2.2 暫態響應議題及解決對策 25 第三章 數位式低壓降穩壓器 28 3.1 架構及原理 28 3.2 模型及分析 31 3.2.1 系統模型 31 3.2.2 穩定度分析 34 3.3 無外掛電容型DLDO之暫態響應 36 3.3.1 議題 36 3.3.2 研究現況 38 3.3.3 比較與討論 44 第四章 具動態電流源陣列之 數位式雙迴路低壓降穩壓器晶片設計 50 4.1 目標與應用 50 4.2 系統規格與架構 50 4.3 系統設計 52 4.4 動態電流源陣列設計 55 4.5 數位控制器設計 57 4.5.1 3位元延遲線類比數位轉換器 57 4.5.2 具set/reset控制之類P控制雙向位移暫存器 62 4.5.3 雙迴路控制切換機制 64 4.6 混層式系統建模及模擬結果 66 4.6.1 混層式晶片設計流程及模擬結果 66 4.6.2 晶片部局考量及規則 69 4.6.3 全晶片後模擬結果 72 4.7 成果比較與討論 74 第五章 晶片實做與量測驗證 75 5.1 量測規劃與量測環境 75 5.2 量測結果 77 5.2.1 穩態量測 77 5.2.2 暫態量測 78 5.3 成果比較與討論 79 第六章 結論及展望 81 6.1 總結與貢獻 81 6.2 未來工作與研究 81 參考文獻 83

    [1] O. Yasuyuki et al., "0.5-V input digital LDO with 98.7% current efficiency and 2.7μA quiescent current in 65nm CMOS," in IEEE Custom Integrated Circuits Conference 2010, 2010, pp. 1-4.
    [2] S. T. Kim et al., "Enabling Wide Autonomous DVFS in a 22 nm Graphics Execution Core Using a Digitally Controlled Fully Integrated Voltage Regulator," IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 18-30, 2016.
    [3] T. I. SLVA072. Technical review of low dropout voltage regulator operation and performance [Online]. Available: http://www.ti.com/lit/an/slva072/slva072.pdf
    [4] V. Gupta, G. A. Rincon-Mora, and P. Raha, "Analysis and design of monolithic, high PSR, linear regulators for SoC applications," in IEEE International SOC Conference, 2004. Proceedings., 2004, pp. 311-315.
    [5] S. K. Lau, P. K. T. Mok, and K. N. Leung, "A Low-Dropout Regulator for SoC With Q-Reduction," IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 658-664, 2007.
    [6] R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, "Full On-Chip CMOS Low-Dropout Voltage Regulator," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 9, pp. 1879-1890, 2007.
    [7] C. H. Tsai and J. H. Wang, "Capacitor-less low-dropout regulator with slew-rate-enhanced circuit," IET Circuits, Devices & Systems, vol. 5, no. 5, pp. 384-391, 2011.
    [8] C. Zhan and W. H. Ki, "Output-Capacitor-Free Adaptively Biased Low-Dropout Regulator for System-on-Chips," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 5, pp. 1017-1028, 2010.
    [9] T. Y. Man, K. N. Leung, C. Y. Leung, P. K. T. Mok, and M. Chan, "Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 5, pp. 1392-1401, 2008.
    [10] S. Gangopadhyay, Y. Lee, S. B. Nasir, and A. Raychowdhury, "Modeling and analysis of digital linear dropout regulators with adaptive control for high efficiency under wide dynamic range digital loads," in 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-6.
    [11] S. B. Nasir and A. Raychowdhury, "A Model Study of an All-Digital, Discrete-Time and Embedded Linear Regulator," 2015.
    [12] S. B. Nasir and A. Raychowdhury, "On limit cycle oscillations in discrete-time digital linear regulators," in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 371-376.
    [13] M. Huang, Y. Lu, U. S. P, and R. P. Martins, "An Analog-Assisted Tri-Loop Digital Low-Dropout Regulator," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 20-34, 2018.
    [14] Y. H. Lee et al., "A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement," IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1018-1030, 2013.
    [15] M. Onouchi et al., "A 1.39-V input fast-transient-response digital LDO composed of low-voltage MOS transistors in 40-nm CMOS process," in IEEE Asian Solid-State Circuits Conference 2011, 2011, pp. 37-40.
    [16] S. B. Nasir, S. Gangopadhyay, and A. Raychowdhury, "All-Digital Low-Dropout Regulator With Adaptive Control and Reduced Dynamic Stability for Digital Load Circuits," IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8293-8302, 2016.
    [17] M. Huang, Y. Lu, S. W. Sin, U. S. P, and R. P. Martins, "A Fully Integrated Digital LDO With Coarse-Fine-Tuning and Burst-Mode Operation," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 7, pp. 683-687, 2016.
    [18] C. Lim, D. Mandal, B. Bakkaloglu, and S. Kiaei, "A 50-mA 99.2% Peak Current Efficiency, 250-ns Settling Time Digital Low-Dropout Regulator With Transient Enhanced PI Controller," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 8, pp. 2360-2370, 2017.
    [19] K. Otsuga et al., "An on-chip 250 mA 40 nm CMOS digital LDO using dynamic sampling clock frequency scaling with offset-free TDC-based voltage sensor," in 2012 IEEE International SOC Conference, 2012, pp. 11-14.
    [20] D. Kim and M. Seok, "Fully integrated low-drop-out regulator based on event-driven PI control," in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 148-149.
    [21] M. Cheah, D. Mandal, B. Bakkaloglu, and S. Kiaei, "A 100-mA, 99.11% Current Efficiency, 2-mVpp Ripple Digitally Controlled LDO With Active Ripple Suppression," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 696-704, 2017.
    [22] D. Kim, J. Kim, H. Ham, and M. Seok, "A 0.5V-VIN 1.44mA-class event-driven digital LDO with a fully integrated 100pF output capacitor," in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 346-347.
    [23] D. Kim and M. Seok, "A Fully Integrated Digital Low-Dropout Regulator Based on Event-Driven Explicit Time-Coding Architecture," IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 3071-3080, 2017.
    [24] T. J. Oh and I. C. Hwang, "A 110-nm CMOS 0.7-V Input Transient-Enhanced Digital Low-Dropout Regulator With 99.98% Current Efficiency at 80-mA Load," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1281-1286, 2015.
    [25] S. M. Lee et al., "A Single-Ended Parallel Transceiver With Four-Bit Four-Wire Four-Level Balanced Coding for the Point-to-Point DRAM Interface," IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1890-1901, 2016.
    [26] C. C. Chiu et al., "A 0.6 V Resistance-Locked Loop Embedded Digital Low Dropout Regulator in 40 nm CMOS With 80.5% Power Supply Rejection Improvement," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 59-69, 2015.
    [27] 陳惠姍, "數位控制切換式穩壓器之非線性轉換及補償技術研究," 國立成功大學碩士論文, 2013.
    [28] G. Jovanovic and M. K. Stojcev, "Current starved delay element with symmetric load," International Journal of Electronics,, vol. 93, pp. 167-175, 2006.
    [29] 陳育煌, "採用堆疊開關功率級之數位降壓晶片設計," 國立成功大學碩士論文, 2016.
    [30] 張倚華, "應用混層式設計方法之數位控制電源轉換晶片設計," 國立成功大學碩士論文, 2017.
    [31] P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan, and S. Borkar, "Area-efficient linear regulator with ultra-fast load regulation," IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 933-940, 2005.
    [32] Y. Lu, "Digitally assisted low dropout regulator design for low duty cycle IoT applications," in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2016, pp. 33-36.
    [33] K. G. Jayaraman, K. Rawy, and T. T. Kim, "A 0.6-V power efficient digital LDO with 99.7% current efficiency utilizing load current aware clock modulation for fast transient response," in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2016, pp. 103-106.
    [34] J. Liu, T. Bryant, N. Maghari, and J. Morroni, "A 90nA quiescent current 1.5V–5V 50mA asynchronous folding LDO using dual loop control," in 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016, pp. 221-224.
    [35] M. Huang, Y. Lu, S. W. Sin, U. S. P, R. P. Martins, and W. H. Ki, "Limit Cycle Oscillation Reduction for Digital Low Dropout Regulators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9, pp. 903-907, 2016.
    [36] W. J. Tsou et al., "Digital low-dropout regulator with anti PVT-variation technique for dynamic voltage scaling and adaptive voltage scaling multicore processor," in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 338-339.
    [37] S. B. Nasir and A. Raychowdhury, "All-digital linear regulators with proactive and reactive gain-boosting for supply droop mitigation in digital load circuits," in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 205-208.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE