| 研究生: |
莊慧生 Jhuang, Huei-Sheng |
|---|---|
| 論文名稱: |
具寬頻域高電源漣波拒斥比之低壓降線性穩壓器 A High PSR LDO over Wide Frequency Range |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 低壓降線性穩壓器 、高電源漣波拒斥比 |
| 外文關鍵詞: | LDO, high PSR |
| 相關次數: | 點閱:113 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個具有寬頻域抑制電源漣波雜訊之低壓降線性穩壓器,並有系統地建立了低壓降線性穩壓器和帶差參考電壓兩種電路的設計流程。本論文設計採用了電源漣波減法級和高通濾波器兩種技術,以及一個具有較大頻寬的誤差放大器來達到寬頻域高電源拒斥比的效能。本電路使用TSMC 0.35um CMOS 2-poly 4-metal 標準製程技術。在負載電流為1mA、輸入電壓3.3V條件下量測的 PSR 效能的結果為:10KHz時為-79dB、100KHz的電源拒斥為-82dB、1MHz的電源拒斥為-60dB,在10MHz 為-30dB值。所以本論文提出的低壓降線性穩壓器架構適用於置於DC-DC 轉換器後端來減少輸出漣波。總晶片面積為776×600μm2。
An improved low dropout regulator (LDO) with high power supply rejection (PSR) over wideb frequency range is presented in this thesis, and a systematic design procedure including LDO and bandgap circuits is introduced. The proposed design employs the supply ripple subtraction, high-pass filtering and a wideband error amplifier to achieve high PSR performance over wide frequency range. The proposed LDO implemented with a standard 0.35μm CMOS 2-poly 4-metal process technology. The measured results at load current of 1mA and input voltage of 3.3v show that the PSR of 10k, 100k, 1M and 10M Hz are -79dB, -82dB, -60dB and -30dB respectively. Therefore, it’s well suited for the LDO used as post regulators of DC-DC converters to reduce the output voltage ripples. The active area of this LDO is 776×600μm2.
[1]R. Tantawy and E. J. Brauer, ”Performance Evaluation of CMOS Low Drop-Out Voltage Regulators,” in Proc. IEEE Midwest Symposium on Circuits and Systems, vol. 1, 2004, pp. 141-144.
[2]J. M. Ingino and V.R. von Kaenel, “A 4-GHz clock system for a high-performance system-on-a-chip design,” IEEE Journal of Solid-State Circuits, vol. 36, NO. 11, 2001.
[3]Lei Lu, Lingbu Meng, Liang Zou, Hao Min and Zhangwen Tang, “A Sub 0.75° RMS Phase Error Differentially-Tuned Fractional-N Synthesizer with On-Chip LDO Regulator and Analog-Enhanced AFC Technique, in Proc. IEEE Custom Integrated Circuit, 2009.
[4]M. El-Nozahi, A. Amer, J. Torres, K. Entesari and E. Sanchez-Sinencio, “High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 658-664, 2010.
[5]”Application Note883: Improved Power Supply Rejection for IC Linear Regulators,” Maxim Integrated Products, Inc., Sunnyvale, CA, Oct. 2002 [Online]. Available: http://www.maximic.com/appnotes.cfm/appnote_number/883, accessed on Dec.4, 2008.
[6]C. Lee, and K. McClellan, “A Supply-Noise-Insensitive CMOS PLL With a Voltage Regulator Using DC–DC Capacitive Converter,” IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1453-1463, Oct. 2001.
[7]V. Gupta and G.A. Rincon-Mora, "A 5mA 0.6um CMOS Miller-Compensated LDO Regulator with -27dB Worst Case Power Supply Rejection Using 60pF of On-Chip Capacitance," in IEEE int. Solid-State Circuits Conf.(ISSCC), Feb. 2007, pp. 520-521.
[8]S. K. Hoon, S. Chen. F. Maloberti, J. Chen, and B. Aravind, “A low noise, high power supply rejection low dropout regulator for wireless system-on-chip applications,” in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2005, pp. 754- 757.
[9]J. Chen, and X. Xi, “Low dropout voltage regulator with improved power supply rejection ratio,” U.S. Patent 6 541 946 B1, Apr. 1, 2003.
[10]S. Heng and C.-K. Pham, “A Low-Power High-PSRR Low-Dropout Regulator With Bulk-Gate Controlled Circuit,” IEEE Transactions on Circuits and Systems II, vol. 57, 2010.
[11]Bang S. Lee. “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” Application Report, Texas Instruments Inc., Oct. 1999.
[12]Gabriel Alfonso Rincon-Mora, Current Efficient, Low Voltage, Low Drop-Out Regulators, Ph.D Thesis, Georgia Institute of Technology, Nov. 1996.
[13]John C. Teel, “Understanding noise in linear regulators,” Analog Application Journal, Texas Instruments Inc, 2005.
[14]Jeff Falin, “Get low-noise, low-ripple, high-PSRR power with the TPS717xx,” Analog Application Journal, Texas Instruments Inc, 2007.
[15]V. Gupta and G. A. Rincon-Mora, “Analysis and design of monolithic, high PSR, linear regulators for SOC applications,” in Proc. IEEE SOC Conf., 2004, pp. 311-315.
[16]John C. Teel, “Understanding power supply ripple rejection in linear regulators,” Analog Application Journal, Texas Instruments Inc, 2005.
[17]Kieran O’Malley, “Linear Regulator Protection Circuitry,” Application Note, On Semiconductor Inc, 2001.
[18]Zhang Nana and Liang Qi, “Design of a Novel Over-Current Protection Circuit,” China integrated circuit, 2007.
[19]K. Wong and D. Evans, “A 150mA Low Noise, High PSRR Low-dropout Linear Regulator in 0.13um Technology for RF SoC Application,” in Proc. European Solid-State Circuits Conference, 2006, pp. 532-535.
[20]G. T.Ong. and P.K. Chan,” A Low Quiescent Biased Regulator With High PSR Dedicated to Micropower Sensor Circuits,” IEEE Sensors Journal, pp. 1266-1275, 2010.
[21]C. Zhan and W. H. Ki, “A low dropout regulator for SoC with high power supply rejection and low quiescent current,” in Proc. IEEE Int. Symp. Integr. Circuits, Dec. 2009, pp. 37-40.
[22]Hafid Amrani, “Standard CMOS low noise high PSRR low dropout regulator with new dynamic compensation,” U.S. Patent 0170404 A1, 2006.
[23]Philip MoK, “Design of Power Management IC- Voltage Reference, Low-Dropout Regulator and Switching Regulator,” 2005混合訊號式積體電路設計專題研討會.
[24]Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, 2001.
[25]Wenguan Li, Ruohe Yao and Lifang Guo, “A low power CMOS bandgap voltage reference with enhanced power supply rejection,” in Proc. IEEE International Conference on Digital Object Identifier, 2009, pp. 300-304.
[26]S. K. Hoon J. Chen and F. Maloberti, “An improved bandgap reference with high power supply rejection,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 5, 2002, pp. V-833-V-836.
[27]V. W. Qiang, Z. Yunzhu, W. Jianhui, and Z. Meng, “Design and analysis of high power supply rejection CMOS bandgap voltage reference,” in Proc IEEE ICASIC, Oct. 2007.
[28]Bang-Sup Song and Paul R. Gray, “A Precision Curvature-Compensated CMOS Bandgap Reference,” IEEE Journal of Solid-State Circuits, vol. SC-18, NO.6, pp. 634-643, Dec. 1989.
[29]G. Giustolisi and G. Palumbo, “A detailed analysis of power-supply noise attenuation in bandgap voltage references,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, NO.2, Feb, 2003.
[30]K. N. Leung and P. K. T. Mok, “A Capacitor-Free CMOS Low-Dropout Regulator With Damping Factor Control Frequency Compensation”, IEEE Journal of Solid-State Circuits, vol. 38, NO.10, pp. 1691-1702, Oct. 2003.
[31]K.N. Leung and P. K. T. Mok, “A CMOS Voltage Reference Based on Weighted VGS for CMOS Low-Dropout Linear Regulators,” IEEE Journal of Solid State Circuits, vol. 38, pp. 146-150, Jan. 2003.
[32]K. N. Leung, P. K. T. Mok and C. Y. Leung,“A 2-V 23-uA 5.3-ppm/oC Curvature-Compensated CMOS Bandgap Reference,”IEEE Journal of Solid-State Circuits, vol. 38, pp. 561-564, Mar. 2003.
[33]S. K. Hoon, J. Chen and F. Maloberti, “An Improved Bandgap Reference with High Power Supply Rejection”, in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 5, May. 2002, pp. 833-836.
[34]H. Shen, X. Wu and X. Yan, “A Precise Bandgap Referencewith High PSRR”, in Proc. IEEE Electron Devices and Solid-State Circuits Conf., Dec. 2005, pp. 267-270.
[35]Johnson Liu, MIXED SIGNAL IC LAYOUT, Workshop on Fully Layout Technology, 2003.
[36]Sanjay Pithadia, “LDO Noise Simplified,” Application Report, Texas Instruments Inc., June. 1999.
[37]Sanjay Pithadia and Scot Lester, “LDO PSRR Measurement Simplified,” Application Report, Texas Instruments Inc., July. 1999.