| 研究生: |
陳思妤 Chen, Shih-Yu |
|---|---|
| 論文名稱: |
三維二氧化錫奈米結構陣列之成長與其應用於光電化學分解
水之研究 Growth of Three-Dimensional SnO2 Nanostructured Array Scaffold for Use in Heterojunction Photoanodes of Photoelectrochemical Water Splitting |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 二氧化錫 、四氧化釩鉍 、三維奈米結構 、異質奈米結構 、光陽極 、光電化學分解水 |
| 外文關鍵詞: | SnO2, BiVO4, 3-D nanostructure, heterojunction photoanode, PEC water splitting |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用溶劑熱法於導電玻璃基板上成長出具有高方向性與高間隙度之二氧化錫一維奈米柱陣列。接著以化學浴沉積法成長樹芽狀奈米顆粒,做為後續成長三維樹枝狀結構之晶種層,最後再次使用溶劑熱法可於樹芽狀顆粒處成長出側枝結構,形成三維二氧化錫樹枝狀奈米結構陣列。穿透式電子顯微鏡分析結果顯示,此二氧化錫奈米柱陣列與三維樹枝狀結構皆為單晶的二氧化錫金紅石結構,具有良好的結晶性。本研究繼以800 奈米長的二氧化錫奈米柱與奈米樹枝結構陣列作為傳輸電子的支架,於其上以金屬-有機物熱裂解法,沉積四氧化釩鉍奈米顆粒薄膜作為吸光層,形成異質介面結構,應用於光電化學分解水之光陽極材料。相較於一維二氧化錫奈米柱狀結構,三維奈米樹枝狀結構能更有效地提升四氧化釩鉍-二氧化錫異質介面光電極的載子分離效率。在噬電洞劑存在電解液的情況下,四氧化釩鉍-二氧化錫奈米樹枝陣列異質介面光電極在施加1.23V vs. RHE時,可得2.02 mA/cm2,與其吸收圖譜換算之完全轉換光電流值2.24 mA/cm2相較計算得知,載子分離效率可達到87%。
In this work, high directional tin oxide nanodendrite array (SnO2 ND) was derived from the solvothermal-grown nanorod (NR) array. The synthesis of the branches on the surface of the SnO2 NR was carried out using chemical batch deposition (CBD) followed by another solvothermal process. Bismuth vanadate (BiVO4) thin film were then deposited on the surface of SnO2 NR and SnO2 ND by metal organic decomposition method to form heterojunction photoanodes for use in photoelectrochemical (PEC) water splitting cell. Under AM 1.5G solar simulator illumination, the photocurrent density of SnO2 ND/BiVO4 photoanode is optimized to be 2.02mA/cm2 at 1.23 V versus reversible hydrogen electrode (RHE) with sodium sulfite (Na¬2SO¬¬3) in the electrolyte as hole scavenger. The three-dimensional nanostructured heterojunction photoanode demonstrates a charge separation efficiency as high as 87% at 1.2 V vs. RHE.
1. Xiao-Bo Chen, Shao-Hua Shen, Lie-Jin Guo, Samuel S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010. 110(110): p. 6503–6570.
2. Fujishima A., Honda K., Electrochemical Photolysis of Water at a Semiconductor Electrode. 1972. 238: p. 37-38.
3. Ming Xu, Pei-Mei Da, Hao-Yu Wu, Dong-Yuan Zhao, Geng-Feng Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett, 2012. 12(3): p. 1503-1508.
4. Jih-Sheng Yang, Wen-Pin Liao, Jih-Jen Wu, Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2013. 5(15): p. 7425-7431.
5. Chin Wei Lai, Srimala Sreekantan, Effect of heat treatment on WO3-loaded TiO2 nanotubes for hydrogen generation via enhanced water splitting. Materials Science in Semiconductor Processing, 2013. 16(3): p. 947-954.
6. Li Cai, Feng Ren, Meng Wang, Guang-Xu Cai, Yu-Bin Chen, Yi-Chao Liu, Shao-Hua Shen, Lie-Jin Guo V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. International Journal of Hydrogen Energy, 2015. 40(3): p. 1394-1401.
7. Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin, Novel ZnO/Fe(2)O(3) Core-Shell Nanowires for Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces, 2015. 7(25): p. 14157-14162.
8. Jiao Yang, Wen-Zhang Li, Jie Li, Di-Bo Sun, Qi-Yuan Chen, Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. Journal of Materials Chemistry, 2012. 22(34): p. 17744–17752.
9. Jin-Zhan Su, Xin-Jian Feng, Jennifer D. Sloppy, Lie-Jin Guo, Craig A. Grimes, Vertically aligned WO(3) nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett, 2011. 11(1): p. 203-208.
10. Jin-Zhan Su, Lie-Jin Guo, Ning-Zhong Bao, Craig A. Grimes, Nanostructured WO(3)/BiVO(4) heterojunction films for efficient photoelectrochemical water splitting. Nano Lett, 2011. 11(5): p. 1928-1933.
11. Mohamad Mohsen Momeni, Faezeh Mohammadi, Yousef Ghayeb Solar water splitting for hydrogen production with Fe2O3 nanotubes prepared by anodizing method: effect of anodizing time on performance of Fe2O3 nanotube arrays. Journal of Materials Science: Materials in Electronics, 2014. 26(2): p. 685-692.
12. Joaquin Resasco, Hao Zhang, Nikolay Kornienko, Nigel Becknell, Hyun-bok Lee, Jing-hua Guo, Alejandro L. Briseno, Pei-dong Yang, TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. ACS Cent Sci, 2016. 2(2): p. 80-88.
13. Savio J. A. Moniz, Stephen A. Shevlin, David James Martin, Zheng-Xiao Guob, Jun-Wang Tang, Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci., 2015. 8(3): p. 731-759.
14. Lite Zhou, Chen-Qi Zhao, Binod Giri, Patrick Allen, Xiao-Wei Xu, Hrushikesh Joshi, Yang-Yang Fan, Lyubov V. Titova, Pratap M. Rao, High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes. Nano Lett, 2016. 16(6): p. 3463-3474.
15. E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Local Field Effects on Electron Transport in Nanostructured TiO2 Revealed by Terahertz Spectroscopy. NANO LETTERS, 2006. 6 (4): p. 755-759.
16. Steven N. Frank, Allen J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. The Journal of Physical Chemlstry, 1977. 81(15): p. 1484-1488.
17. Xiao-Sheng Fang, Li-Min Wu, Handbook of Innovative Nanomaterials: From Syntheses to Applications. 2012.
18. Xincun Dou, Dharani Sabba, Nripan Mathews, Lydia Helena Wong, Yeng-Ming Lam, Subodh Mhaisalkar, Hydrothermal Synthesis of High Electron Mobility Zn-doped SnO2Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells. Chemistry of Materials, 2011. 23(17): p. 3938-3945.
19. Priti Tiwana, Pablo Docampo, Michael B. Johnston, Henry J. Snaith, Laura M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. 2011: p. 5158–5166.
20. Peng Sun, Lu You, Yan-Feng Sun, Nian-Ke Chen, Xian-Bin Li, Hong-Bo Sun, Jian Ma, Ge-Yu Lu, Novel Zn-doped SnO2hierarchical architectures: synthesis, characterization, and gas sensing properties. CrystEngComm, 2012. 14(5): p. 1701-1708.
21. Shu-Ai Chen, Miao Wang, Jian-Feng Ye, Jin-Guang Cai, Yu-Rong Ma, Heng-Hui Zhou, Li-Min Qi Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research, 2013. 6(4): p. 243-252.
22. Yi-Qing Sun, William D. Chemelewski, Sean P. Berglund, Chun Li, Huichao He, Gaoquan Shi, and C. Buddie Mullins, Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl Mater Interfaces, 2014. 6(8): p. 5494-54949.
23. Wei-Jun Ke, De-Wei Zhao, Alexander J. Cimaroli, Corey R. Grice, Ping-Li Qin, Qin Liu, Liang-Bin Xiong, Yan-Fa Yan, Guo-Jia Fang, Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J. Mater. Chem. A, 2015. 3(47): p. 24163-24168.
24. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W. I. Milne, W. P. Gillinc, G. Adamopoulos, Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. Journal of Materials Chemistry C, 2016. 4(16): p. 3563-3570.
25. Ginley, David, Handbook of Transparent Conductors. 2010.
26. Michael S. Arnold, Phaedon Avouris, Zheng-Wei Pan, Zhong L. Wang, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts. J. Phys. Chem. B 2003. 107: p. 659-663.
27. Ki-Chang Song, Yong Kang Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Materials Letters 2000. 42: p. 283–289.
28. C. Ararat Ibarguen, A. Mosquera, R. Parra, M.S. Castro, J.E. Rodr´ıguez-P´aez, Synthesis of SnO2 nanoparticles through the controlled precipitation route. Materials Chemistry and Physics, 2007. 101(2-3): p. 433-440.
29. Nam Seok Baik, Go Sakai, Kengo Shimanoe, Norio Miura, Noboru Yamazoe, Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sensors and Actuators B, 2000. 65 p. 97–100.
30. Patnaik, Pradyot, Handbook of Inorganic Chemicals. 2002.
31. Eiichi Yagi, Ryukiti R. Hasiguti, Masakazu Aono, Electronic conduction above4Kof slightly reduced oxygen-deficient rutile TiO2ⴚx. PHYSICAL REVIEW B, 1996. 54( 11): p. 7945–7956.
32. Z. M. Jarzebski, J. P. Marten Physical Properties of Sn02 Materials. Journal of electrochemical society, 1976: p. 299C-310c.
33. D. C Look, D. C Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C Harsch, Electrical properties of bulk ZnO. Solid State Communications, 1998. 105(6): p. 399-401.
34. Yu-de Wang, Chun-lai Ma, Xiao-dan Sun, Heng-de Li, Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method. Nanotechnology, 2002. 13(5): p. 565-569.
35. Da Deng, Jim-Yang Lee, Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage. Chemistry of Materials, 2008. 20: p. 1841–1846.
36. Yu-Sheng Lin, Jenq-Gong Duh, , Min-Hsiu Hung, Shell-by-Shell Synthesis and Applications of Carbon-Coated SnO2 Hollow Nanospheres in Lithium-Ion Battery. The Journal of Physical Chemistry C 2010. 114: p. 13136–13141.
37. Devinda Liyanage, Herath Mudiyanselage Navaratne Bandara, Viraj Jayaweera, Kenji Murakami, Ethylene Glycol Assisted Synthesis of Fluorine Doped Tin Oxide Nanorods Using Improved Spray Pyrolysis Deposition Method. Applied Physics Express, 2013. 6(8): p. 085501-1-085501-3.
38. Jia-Zeng Wang, Ning Du, Hui Zhang, Jing-Xue Yu, Deren Yang, Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries. The Journal of Physical Chemistry C, 2011. 115(22): p. 11302-11305.
39. D.M. Qu, P.X. Yan, J.B. Chang, D. Yan, J.Z. Liu, G.H. Yue, R.F. Zhuo, H.T. Feng, Nanowires and nanowire–nanosheet junctions of SnO2 nanostructures. Materials Letters, 2007. 61(11–12): p. 2255-2258.
40. Hong-Kang Wang, Andrey L. Rogach, Hierarchical SnO2Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chemistry of Materials, 2014. 26(1): p. 123-133.
41. Ya-Li Wang, Min Guo, Mei Zhang, Xi-Dong Wang, Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm, 2010. 12(12): p. 4024–4027.
42. Hirotoshi Ohgi, Takahiro Maeda, Eiji Hosono, Shinobu Fujihara, Hiroaki Imai, Evolution of Nanoscale SnO2 Grains, Flakes, and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions. Crystal Growth & Design, 2005. 5(3): p. 1079-1083.
43. Zi-Rong Li, Xue-Liang Li, Xiao-Xi Zhang, Yi-Tai Qian, Hydrothermal synthesis and characterization of novel flower-like zinc-doped SnO2 nanocrystals. Journal of Crystal Growth, 2006. 291(1): p. 258-261.
44. Abe, Ryu, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4): p. 179-209.
45. Currao, Antonio, Photoelectrochemical Water Splitting. CHIMIA International Journal for Chemistry, 2007. 61(12): p. 815-819.
46. Amy L. Linsebigler, Guangquan Lu, John T. Yates, Jr., Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95: p. 735-758.
47. Jih-Sheng Yang, Jih-Jen Wu, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy, 2017. 32: p. 232-240.
48. Tahereh Jafari, Ehsan Moharreri, Alireza Shirazi Amin, Ran Miao, Wenqiao Song, Steven L. Suib, Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules, 2016. 21(7): p. 900.
49. Jin-Hyun Kim, Ji-Wook Jang, Yim-Hyun Jo, Fatwa F. Abdi, Young-Hye Lee, Roel van de Krol, Jae-Sung Lee, Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun, 2016. 7: p. 13380.
50. Kristine Rodulfo Tolod, Simelys Hernández, Nunzio Russo, Recent Advances in the BiVO4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts, 2017. 7(1): p. 13.
51. Joshua M. Spurgeon, Harry A. Atwater, and Nathan S. Lewis, A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes. The Journal of Physical Chemistry C, 2008. 112: p. 6186-6193.
52. Mi Gyoung Lee , Do Hong Kim, Woonbae Sohn , Cheon Woo Moon , Hoonkee Park , Sanghan Lee, Ho Won Jang Conformally coated BiVO 4 nanodots on porosity-controlled WO 3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy, 2016. 28: p. 250-260.
53. Pratap M. Rao, Li-Li Cai, Chong Liu, In-Sun Cho, Chi-Hwan Lee, Jeffrey M. Weisse, Pei-dong Yang, Xiao-lin Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett, 2014. 14(2): p. 1099-1105.
54. P. Chatchai, Y. Murakami, S.-y. Kishioka, A. Y. Nosaka, Y. Nosaka, FTO/SnO2/BiVO4 Composite Photoelectrode for Water Oxidation under Visible Light Irradiation. Electrochemical and Solid-State Letters, , 2008. 11 (6): p. H160-H163.
55. Joseph E. Yourey, Kayla J. Pyper, Joshua B. Kurtz, and Bart M. Bartlett, Chemical Stability of CuWO4for Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C, 2013. 117(17): p. 8708-8718.
56. James C. Hill , Kyoung-Shin Choi, Effect of Electrolytes on the Selectivity and Stability of n-type WO3Photoelectrodes for Use in Solar Water Oxidation. The Journal of Physical Chemistry C, 2012. 116(14): p. 7612-7620.
57. Jin-Hui Yang, Don-Ge Wang, Hong-Xian Han, Can Li, Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 2012. 46(8): p. 1900–1909.
58. Sung-Kyu Choi, Won-Yong Choi, Hyun-Woong Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys, 2013. 15(17): p. 6499-507.
59. Tae-Woo Kim, Kyoung-Shin Choi, Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science, 2014. 343( 6174): p. 990-994.
60. MyScope TEM. Available from: http://www.ammrf.org.au/myscope/tem/introduction/.
61. Ian R. Lewis, Howell Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line. 2001.
62. A. Die´guez, A. Romano-Rodrı´guez, A. Vila` , and J. R. Morante, The complete Raman spectrum of nanometric SnO2 particles. JOURNAL OF APPLIED PHYSICS, 2001. 90(3): p. 1550-1556.
63. Jing Xu, Yan-Song Li, Hong-Tao Huang, Yu-Guang Zhu, Zhuo-Ran Wang, Zhong Xie, Xian-Fu Wang, Di Chen, Guo-Zhen Shen, Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. Journal of Materials Chemistry, 2011. 21(47): p. 19086–19092.
校內:2022-08-15公開