| 研究生: |
胡少揚 Hu, Shao-Yang |
|---|---|
| 論文名稱: |
採用鋰離子電池儲能設備於多機電力系統連接混合再生能源系統之穩定度分析 Stability Analysis of a Multi-machine Power System Connected with a Hybrid Renewable-energy System Using a Li-ion Battery Energy-storage Unit |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 鋰離子電池儲能系統 、雙向直流對直流轉換器 、風場 、太陽能場 、多機電力系統 、穩定度 、功率平滑 |
| 外文關鍵詞: | Li-ion battery energy-storage system, bidirectional DC-DC converter, wind farm, photovoltaic farm, multi-machine power system, stability, power smoothing |
| 相關次數: | 點閱:200 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出以鋰離子電池為基礎之儲能系統,將該儲能系統經由一個雙向直流對直流轉換器加入含有永磁同步發電機為基礎的風場與光伏太陽能場之混合再生能源系統之直流鏈,該直流鏈再經過一個直流對交流換流器併入四機雙區域之多機電力系統,以評估該儲能系統於改善混合再生能源系統連接多機電力系統穩定度之有效性。本文使用MATLAB/Simulink套裝軟體建立該單一鋰離子電池之等效電路模型,並且詳細描述該模型之建立步驟,再進一步提出多個鋰離子電池之聚集等效模型,並分析其性能與特性,以驗證該聚集等效模型之有效性。文中亦建立所研究混合再生能源系統模型、鋰離子電池儲能系統以及四機雙區域多機電力系統之整合模型,並針對該整合模型在不同運轉條件下進行穩態、動態及暫態之特性分析。文中並比較了加入鋰離子電池儲能系統前後,對於所研究混合再生能源系統連接多機系統之功率平滑及穩定度改善能力。
This thesis proposes a Li-ion battery-based energy-storage system (ESS) integrated with the DC link of a hybrid renewable-energy system with a permanent-magnet synchronous generator-based wind farm and a photovoltaic solar farm through a bidirectional DC-DC converter. The DC link is connected to a two-area multi-machine power system through a DC-AC inverter in order to analyze the effectiveness of the proposed ESS for improving the stability of the studied system. The modeling steps for the equivalent-circuit model of a Li-ion battery using a software package of MATLAB/Simulink are described in detail. The performance and characteristics of an aggregate equivalent-circuit model of multiple Li-ion batteries are analyzed to verify its effectiveness. The complete studied system model is established to simulate the steady-state, dynamic, and transient characteristics under various operating conditions. Moreover, the comparative power-smoothing and stability-improvement characteristics of the studied hybrid renewable-energy system fed to the multi-machine power system with and without the proposed ESS are also achieved.
[1] 經濟部能源局。[Online]. Available: https://www.moeaboe.gov.tw, retrieved date: Apr. 10, 2020.
[2] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied Energy, vol. 137, pp. 511-536, Jan. 2015.
[3] 經濟部標準檢驗局,儲能(鋰電池)標準暨檢測技術計畫。 [Online]. Available: https://www.bsmi.gov.tw/wSite/public/Data/f1578638351999.pdf, retrieved date: Apr. 10, 2020.
[4] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Trans. Components and Packaging Technologies, vol. 25, no. 3, pp. 495-505, Sep. 2002.
[5] B. Y. Liaw, G. Nagasubramanian, R. G. Jungst, and D. H. Doughty, “Modeling of lithium ion cells—A simple equivalent-circuit model approach,” Solid State Ionics, vol. 175, no. 1-4, pp. 835-839, Nov. 2004.
[6] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Apr. 10, 2020.
[7] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects,” Journal of Power Sources, vol. 196, no. 10, pp. 4826-4831, May 2011.
[8] H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, vol. 4, no. 4, pp. 582-598, Mar. 2011.
[9] K. M. Tsang, L. Sun, and W. L. Chan, “Identification and modelling of lithium ion battery,” Energy Conversion and Management, vol. 51, no. 12, pp. 2857-2862, Dec. 2010.
[10] X. Xiaoa, H. Yib, Q. Kang, and J. Nie, “A two-level energy storage system for wind energy systems,” Procedia Environmental Sciences, vol. 12, pp. 130-136, 2012.
[11] M. Świerczyński, D. I. Stroe, R. Lærke, A.I. Stan, P. C. Kjær, R. Teodorescu, and S.K. Kær, “Field experience from Li-ion BESS delivering primary frequency regulation in the danish energy market,” in Proc. 2014 225th ECS Meeting, Orlando, FL, USA, May 11-15, 2014, pp. 1-14.
[12] L. Liu, L. Y. Wang, Z. Chen, C. Wang, F. Lin, and H. Wang, “Integrated system identification and state-of-charge estimation of battery systems,” IEEE Trans. Energy Conversion, vol. 28, no. 1, pp. 12-23, Mar. 2013.
[13] Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966-973, Mar. 2014.
[14] Y. Hu and Y.-Y. Wang, “Two time-scaled battery model identification with application to battery state estimation,” IEEE Trans. Control Systems Technology, vol. 23, no. 3, pp. 1180-1188, May 2015.
[15] P. Thounthong, S. Sikkabut, P. Mungporn, L. Piegari, B. Nahid-Mobarakeh, S. Pierfederici, and B. Davat, “DC bus stabilization of Li-ion battery based energy storage for a hydrogen/solar power plant for autonomous network applications,” IEEE Trans. Industry Applications, vol. 51, no. 4, pp. 2717-2725, Jul./Aug. 2015.
[16] S. Sikkabut, P. Mungporn, C. Ekkaravarodome, N. Bizon, P. Tricoli, B. Nahid-Mobarakeh, S. Pierfederici, B. Davat, and P. Thounthong, “Control of high-energy high-power densities storage devices by Li-ion battery and supercapacitor for fuel cell/photovoltaic hybrid power plant for autonomous system applications,” IEEE Trans. Industry Applications, vol. 52, no. 5, pp. 4935-4407, Sep./Oct. 2016.
[17] D.-I. Stroe, V. Knap, M. Swierczynski, A.-I. Stroe, and R. Teodorescu, “Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective,” IEEE Trans. Industry Applications, vol. 53, no. 1, pp. 430-438, Jan./Feb. 2017.
[18] F. Zhu, G. Liu, C. Tao, K. Wang, and K. Jiang, “Battery management system for Li-ion battery,” The Journal of Engineering, vol. 2017, no. 13, pp. 1437-1440, Oct. 2017.
[19] C.-L. Hsieh, K.-L. Hsueh, Y.-L. Jhong, and C.Y. Dai, “Power utility tests for multi-MW high energy batteries,” in Proc. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, Oct. 14-17, 2018, pp. 1396-1399.
[20] N. Boyouk, N. Munzke, and M. Hiller, “Peak shaving of a grid connected-photovoltaic battery system at Helmholtz Institute Ulm (HIU),” in Proc. 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Accessed on: Apr. 10, 2020. [Online]. Available: doi: 10.1109/ISGTEurope.2018.8571616
[21] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年6月。
[22] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[23] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: Transient stability studies,” IET Renewable Power Generation, vol. 3, no. 1, pp. 39-52, Mar. 2009.
[24] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010.
[25] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS,” IEEE Trans. Energy Conversion, vol. 26, no. 2, pp. 550-558, Jun. 2011.
[26] S. Georg, H. Schulte, and H. Aschemann, “Control-oriented modelling of wind turbines using a Takagi-Sugeno model structure,” in Proc. 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, Jun. 10-15, 2012, pp. 1-8.
[27] Z. Xu and Z. Pan, “Influence of different flexible drive train models on the transient responses of DFIG wind turbine,” in Proc. 2011 International Conference on Electrical Machines and Systems, Beijing, China, Aug. 20-23, 2011, pp. 1-6.
[28] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, no. 12, pp. 13395-13418, Nov. 2015.
[29] S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang, “Design of a robust grid interface system for PMSG-based wind turbine generators,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 316-328, Jan. 2011.
[30] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2325-2337, May 2012.
[31] D. Saidani, O. Hasnaoui, and R. Dhifaoui, “Control of double fed induction generator in WECS,” in Proc. The 2nd International Conference on Power Engineering and Renewable Energy (ICPERE) 2014, Bali, Indonesia, Dec. 9-11, 2014, pp. 25-30.
[32] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Modeling and circuit-based simulation of photovoltaic arrays,” in Proc. 2009 Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul, Brazil, Sep. 27-Oct. 1, 2009, pp. 1244-1254.
[33] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
[34] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
[35] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
[36] H. Abdel-Gawad and V. K. Sood, “Small-signal analysis of boost converter, including parasitics, operating in CCM,” in Proc. 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, Dec. 5-7, 2014, pp. 1-5.
[37] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
[38] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
[39] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology, Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
[40] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
[41] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
[42] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Ames, IA, USA: Iowa State University Press, 1997.
[43] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
[44] 儲能發展的勁旅-鋰離子電池。[Online]. Available: https://ejournal.stpi.narl.org.tw/sd/download?source=1080510.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1, retrieved date: Apr. 10, 2020.
[45] 賴世榮,智慧型鋰離子電池殘存電量估測之研究,國立中山大學電機工程學系碩士論文,2004年10月。
[46] 林士人,鋰電池電量模擬平台之研究,國立交通大學電機與控制學程碩士論文,2007年7月。
[47] Advanced Technology Consultants, “Technologies in Energy Storage for Electricity (ESE) (Smart Grid Applications),” Advanced Technology Consultants, Laguna Niguel, CA, USA, 2011. Accessed on: Apr. 10, 2020. [Online]. Available: https://advtechconsultants.com/wp-content/uploads/2018/07/Energy-Storage-Technologies_Smart-Grid-Applications_Chehroudi_v3.pdf
[48] A. A. Hussein, “Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks,” IEEE Trans. Industry Applications, vol. 51, no. 3, pp. 2321-2330, May/Jun. 2015.
[49] M. A. hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, Mar. 2018.
[50] 中央氣象局。 [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: Apr. 10, 2020.
校內:2025-01-01公開