簡易檢索 / 詳目顯示

研究生: 胡少揚
Hu, Shao-Yang
論文名稱: 採用鋰離子電池儲能設備於多機電力系統連接混合再生能源系統之穩定度分析
Stability Analysis of a Multi-machine Power System Connected with a Hybrid Renewable-energy System Using a Li-ion Battery Energy-storage Unit
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 134
中文關鍵詞: 鋰離子電池儲能系統雙向直流對直流轉換器風場太陽能場多機電力系統穩定度功率平滑
外文關鍵詞: Li-ion battery energy-storage system, bidirectional DC-DC converter, wind farm, photovoltaic farm, multi-machine power system, stability, power smoothing
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以鋰離子電池為基礎之儲能系統,將該儲能系統經由一個雙向直流對直流轉換器加入含有永磁同步發電機為基礎的風場與光伏太陽能場之混合再生能源系統之直流鏈,該直流鏈再經過一個直流對交流換流器併入四機雙區域之多機電力系統,以評估該儲能系統於改善混合再生能源系統連接多機電力系統穩定度之有效性。本文使用MATLAB/Simulink套裝軟體建立該單一鋰離子電池之等效電路模型,並且詳細描述該模型之建立步驟,再進一步提出多個鋰離子電池之聚集等效模型,並分析其性能與特性,以驗證該聚集等效模型之有效性。文中亦建立所研究混合再生能源系統模型、鋰離子電池儲能系統以及四機雙區域多機電力系統之整合模型,並針對該整合模型在不同運轉條件下進行穩態、動態及暫態之特性分析。文中並比較了加入鋰離子電池儲能系統前後,對於所研究混合再生能源系統連接多機系統之功率平滑及穩定度改善能力。

    This thesis proposes a Li-ion battery-based energy-storage system (ESS) integrated with the DC link of a hybrid renewable-energy system with a permanent-magnet synchronous generator-based wind farm and a photovoltaic solar farm through a bidirectional DC-DC converter. The DC link is connected to a two-area multi-machine power system through a DC-AC inverter in order to analyze the effectiveness of the proposed ESS for improving the stability of the studied system. The modeling steps for the equivalent-circuit model of a Li-ion battery using a software package of MATLAB/Simulink are described in detail. The performance and characteristics of an aggregate equivalent-circuit model of multiple Li-ion batteries are analyzed to verify its effectiveness. The complete studied system model is established to simulate the steady-state, dynamic, and transient characteristics under various operating conditions. Moreover, the comparative power-smoothing and stability-improvement characteristics of the studied hybrid renewable-energy system fed to the multi-machine power system with and without the proposed ESS are also achieved.

    摘要 I SUMMARY II 致謝 VIII 目錄 IX 表目錄 XIV 圖目錄 XV 符號說明 XX 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 3 1-3 本論文貢獻 9 1-4 研究內容概述 10 第二章 系統架構與數學模型 12 2-1 前言 12 2-2 風力發電系統 15 2-2-1 風渦輪機數學模型 15 2-2-2 旋角控制器數學模型 16 2-2-3 等效兩質量-彈簧-阻尼器系統數學模型 18 2-2-4 永磁同步發電機數學模型 19 2-2-5 電壓源轉換器之數學模型 21 2-3 太陽能發電系統 22 2-3-1 光伏電池數學模型 22 2-3-2 太陽能陣列數學模型 24 2-3-3 直流對直流升壓轉換器數學模型 25 2-4 鋰離子電池儲能系統 29 2-5 直流對交流電壓源換流器數學模型 32 2-6 多機系統數學模型 35 2-6-1 同步發電機數學模型 35 2-6-2 激磁系統數學模型 38 2-6-3 蒸汽渦輪機數學模型 39 2-6-4 調速機數學模型 40 2-6-5 四機雙區域電力系統負載與傳輸線網路數學模型 41 第三章 鋰離子電池模型建立與特性分析 44 3-1 前言 44 3-2 鋰離子電池之特性 45 3-3 鋰離子電池之模型建立與性能分析 48 3-3-1 鋰離子電池之模型建立 48 3-3-2 鋰離子電池之參數計算 49 3-3-3 鋰離子電池之穩態分析 52 3-3-4 鋰離子電池之動態與暫態分析 55 3-3-4-1 鋰離子電池之完全充電循環 55 3-3-4-2 鋰離子電池之完全放電循環 58 3-3-4-3 鋰離子電池之完全充放電循環 60 3-3-4-4 鋰離子電池之充放電暫態響應 61 3-4 鋰離子電池之聚集等效模型建立與性能分析 63 3-4-1 鋰離子電池之聚集等效模型建立 63 3-4-2 鋰離子電池聚集等效電路模型之穩態分析 64 3-4-3 鋰離子電池聚集等效電路模型之動態與暫態分析 68 3-4-3-1 鋰離子電池聚集等效電路模型之完全充電循環 68 3-4-3-2 鋰離子電池聚集等效模型之完全放電循環 71 3-4-3-3 鋰離子電池聚集等效電路模型之完全充放電循環 73 3-4-3-4 鋰離子電池聚集等效模型暫態模擬 74 第四章 系統穩態分析與小訊號穩定度分析 76 4-1 前言 76 4-2 特徵值求得方法 77 4-3 研究案例一:所研究系統加入鋰離子電池儲能系統前後之系統特徵值分析 79 4-4 研究案例二:所研究系統於風場風速變動時之系統特徵值根軌跡分析 83 4-5 研究案例三:所研究系統於太陽能場日射量變動時之系統特徵值根軌跡圖分析 88 4-6 研究案例四:所研究系統於風場風速及太陽能場日射量變動時之三維特性曲線分析 93 第五章 動態與暫態分析 97 5-1 前言 97 5-2 動態分析 99 5-2-1 研究案例一:輸入模擬風速與模擬日射量之動態分析 99 5-2-2 研究案例二:實際風速與實際日射量之動態分析 104 5-3 暫態分析 109 5-3-1 研究案例三:風場瞬間跳脫時對所研究系統之暫態響應 109 5-3-2 研究案例四:太陽能場跳脫時所研究系統架構之暫態響應 114 第六章 結論與未來研究方向 119 6-1 結論 119 6-2 未來研究方向 121 參考文獻 123 附錄:本論文研究系統架構所使用之參數 131

    [1] 經濟部能源局。[Online]. Available: https://www.moeaboe.gov.tw, retrieved date: Apr. 10, 2020.
    [2] X. Luo, J. Wang, M. Dooner, and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Applied Energy, vol. 137, pp. 511-536, Jan. 2015.
    [3] 經濟部標準檢驗局,儲能(鋰電池)標準暨檢測技術計畫。 [Online]. Available: https://www.bsmi.gov.tw/wSite/public/Data/f1578638351999.pdf, retrieved date: Apr. 10, 2020.
    [4] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Trans. Components and Packaging Technologies, vol. 25, no. 3, pp. 495-505, Sep. 2002.
    [5] B. Y. Liaw, G. Nagasubramanian, R. G. Jungst, and D. H. Doughty, “Modeling of lithium ion cells—A simple equivalent-circuit model approach,” Solid State Ionics, vol. 175, no. 1-4, pp. 835-839, Nov. 2004.
    [6] J. A. Chahwan, “Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications,” M.S. Thesis, McGill University, Montreal, Quebec, Canada, 2007. Accessed on: Apr. 10, 2020. 
    [7] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects,” Journal of Power Sources, vol. 196, no. 10, pp. 4826-4831, May 2011.
    [8] H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, vol. 4, no. 4, pp. 582-598, Mar. 2011.
    [9] K. M. Tsang, L. Sun, and W. L. Chan, “Identification and modelling of lithium ion battery,” Energy Conversion and Management, vol. 51, no. 12, pp. 2857-2862, Dec. 2010.
    [10] X. Xiaoa, H. Yib, Q. Kang, and J. Nie, “A two-level energy storage system for wind energy systems,” Procedia Environmental Sciences, vol. 12, pp. 130-136, 2012.
    [11] M. Świerczyński, D. I. Stroe, R. Lærke, A.I. Stan, P. C. Kjær, R. Teodorescu, and S.K. Kær, “Field experience from Li-ion BESS delivering primary frequency regulation in the danish energy market,” in Proc. 2014 225th ECS Meeting, Orlando, FL, USA, May 11-15, 2014, pp. 1-14.
    [12] L. Liu, L. Y. Wang, Z. Chen, C. Wang, F. Lin, and H. Wang, “Integrated system identification and state-of-charge estimation of battery systems,” IEEE Trans. Energy Conversion, vol. 28, no. 1, pp. 12-23, Mar. 2013.
    [13] Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966-973, Mar. 2014.
    [14] Y. Hu and Y.-Y. Wang, “Two time-scaled battery model identification with application to battery state estimation,” IEEE Trans. Control Systems Technology, vol. 23, no. 3, pp. 1180-1188, May 2015.
    [15] P. Thounthong, S. Sikkabut, P. Mungporn, L. Piegari, B. Nahid-Mobarakeh, S. Pierfederici, and B. Davat, “DC bus stabilization of Li-ion battery based energy storage for a hydrogen/solar power plant for autonomous network applications,” IEEE Trans. Industry Applications, vol. 51, no. 4, pp. 2717-2725, Jul./Aug. 2015.
    [16] S. Sikkabut, P. Mungporn, C. Ekkaravarodome, N. Bizon, P. Tricoli, B. Nahid-Mobarakeh, S. Pierfederici, B. Davat, and P. Thounthong, “Control of high-energy high-power densities storage devices by Li-ion battery and supercapacitor for fuel cell/photovoltaic hybrid power plant for autonomous system applications,” IEEE Trans. Industry Applications, vol. 52, no. 5, pp. 4935-4407, Sep./Oct. 2016.
    [17] D.-I. Stroe, V. Knap, M. Swierczynski, A.-I. Stroe, and R. Teodorescu, “Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective,” IEEE Trans. Industry Applications, vol. 53, no. 1, pp. 430-438, Jan./Feb. 2017.
    [18] F. Zhu, G. Liu, C. Tao, K. Wang, and K. Jiang, “Battery management system for Li-ion battery,” The Journal of Engineering, vol. 2017, no. 13, pp. 1437-1440, Oct. 2017.
    [19] C.-L. Hsieh, K.-L. Hsueh, Y.-L. Jhong, and C.Y. Dai, “Power utility tests for multi-MW high energy batteries,” in Proc. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, Oct. 14-17, 2018, pp. 1396-1399.
    [20] N. Boyouk, N. Munzke, and M. Hiller, “Peak shaving of a grid connected-photovoltaic battery system at Helmholtz Institute Ulm (HIU),” in Proc. 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Accessed on: Apr. 10, 2020. [Online]. Available: doi: 10.1109/ISGTEurope.2018.8571616
    [21] 曾喜彥,採用全釩氧化還原液流電池於市電併聯型混合再生能源發電系統之性能改善,國立成功大學電機工程學系碩士論文,2019年6月。
    [22] P. Kundur, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [23] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: Transient stability studies,” IET Renewable Power Generation, vol. 3, no. 1, pp. 39-52, Mar. 2009.
    [24] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010.
    [25] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS,” IEEE Trans. Energy Conversion, vol. 26, no. 2, pp. 550-558, Jun. 2011.
    [26] S. Georg, H. Schulte, and H. Aschemann, “Control-oriented modelling of wind turbines using a Takagi-Sugeno model structure,” in Proc. 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia, Jun. 10-15, 2012, pp. 1-8.
    [27] Z. Xu and Z. Pan, “Influence of different flexible drive train models on the transient responses of DFIG wind turbine,” in Proc. 2011 International Conference on Electrical Machines and Systems, Beijing, China, Aug. 20-23, 2011, pp. 1-6.
    [28] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, no. 12, pp. 13395-13418, Nov. 2015.
    [29] S. Zhang, K.-J. Tseng, D. M. Vilathgamuwa, T. D. Nguyen, and X.-Y. Wang, “Design of a robust grid interface system for PMSG-based wind turbine generators,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 316-328, Jan. 2011.
    [30] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electronics, vol. 27, no. 5, pp. 2325-2337, May 2012.
    [31] D. Saidani, O. Hasnaoui, and R. Dhifaoui, “Control of double fed induction generator in WECS,” in Proc. The 2nd International Conference on Power Engineering and Renewable Energy (ICPERE) 2014, Bali, Indonesia, Dec. 9-11, 2014, pp. 25-30.
    [32] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Modeling and circuit-based simulation of photovoltaic arrays,” in Proc. 2009 Brazilian Power Electronics Conference, Bonito-Mato Grosso do Sul, Brazil, Sep. 27-Oct. 1, 2009, pp. 1244-1254.
    [33] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [34] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [35] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [36] H. Abdel-Gawad and V. K. Sood, “Small-signal analysis of boost converter, including parasitics, operating in CCM,” in Proc. 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, Dec. 5-7, 2014, pp. 1-5.
    [37] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
    [38] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [39] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology, Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
    [40] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [41] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [42] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Ames, IA, USA: Iowa State University Press, 1997.
    [43] IEEE, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005, Dec. 2005.
    [44] 儲能發展的勁旅-鋰離子電池。[Online]. Available: https://ejournal.stpi.narl.org.tw/sd/download?source=1080510.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1, retrieved date: Apr. 10, 2020.
    [45] 賴世榮,智慧型鋰離子電池殘存電量估測之研究,國立中山大學電機工程學系碩士論文,2004年10月。
    [46] 林士人,鋰電池電量模擬平台之研究,國立交通大學電機與控制學程碩士論文,2007年7月。
    [47] Advanced Technology Consultants, “Technologies in Energy Storage for Electricity (ESE) (Smart Grid Applications),” Advanced Technology Consultants, Laguna Niguel, CA, USA, 2011. Accessed on: Apr. 10, 2020. [Online]. Available: https://advtechconsultants.com/wp-content/uploads/2018/07/Energy-Storage-Technologies_Smart-Grid-Applications_Chehroudi_v3.pdf
    [48] A. A. Hussein, “Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks,” IEEE Trans. Industry Applications, vol. 51, no. 3, pp. 2321-2330, May/Jun. 2015.
    [49] M. A. hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, Mar. 2018.
    [50] 中央氣象局。 [Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: Apr. 10, 2020.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE