| 研究生: |
梁正儒 Liang, Jheng-Ru |
|---|---|
| 論文名稱: |
正交分頻多工系統中載波頻率偏移與IQ不平衡之聯合估測與補償 Joint Estimation and Compensation of Carrier Frequency Offset and I/Q Imbalance in OFDM Systems |
| 指導教授: |
郭致宏
Kuo, Chih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 正交分頻多工系統 、載波頻率偏移 、IQ不平衡 |
| 外文關鍵詞: | Orthogonal frequency division multiplexing (OFDM), Carrier Frequency Offset, IQ Imbalance |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們考量了兩個正交分頻多工系統中的非理想效應:載波頻率偏移(Carrier Frequency Offset)與IQ不平衡 (IQ imbalance)。此兩種非理想效應都會對系統效能產生嚴重影響。現有的各種聯合估測演算法通常需要做迭代運算才能在估測中收斂,或是其計算複雜度太高。因此,我們根據序文內兩段相同的序列,提出一個以最小平方法 (Least Square)為基礎的演算法來聯合估測載波頻率偏移與IQ不平衡。從模擬結果可得知,我們提出的演算法在不同的SNR情況下,估測載波頻率偏移與IQ不平衡的效能都是強健的。在IQ不平衡的估測中,即使在振幅誤差3dB,相位誤差20度的情況下,也能維持強健的估測效能。此外,我們所提出的演算法其複雜度也比EM-based之演算法來的低。
In this thesis, we consider two non-ideal effects in orthogonal frequency division multiplexing (OFDM) system: carrier frequency offset (CFO) and IQ imbalance. Both CFO and IQ imbalance degrade the system performance seriously. Current joint estimation algorithms need iterations to converge in the estimation, or their computational complexity are considerably high. As a result, we proposed a LS-based method to estimate both CFO and IQ imbalance based on the two identical sequences in the preamble. Simulation results show that it is robust for a wide SNR range both in CFO and IQ imbalance estimation. The performance of IQ imbalance estimation is robust even with gain error 3dB, phase error 20°. Moreover, the proposed method has much lower complexity than the EM-based approach.
[1] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams, Indianapolis, Indiana, 2002.
[2] F. Horlin and A. Bourdoux, Digital Compensation for Analog Front-Ends: A New Approach to Wireless Transceiver Design, MA: John Wiley, 2008.
[3] IEEE Std 802.11a-1999-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5-GHz Band, 1999.
[4] ETSI, “Broadband Radio Access Networks (BRAN); HIPERLAN type 2 technical specification; Physical (PHY) layer,” April 2000.
[5] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[6] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994.
[7] J. Tubbax, A. Fort, L. Van der Perre, S. Donnay, M. Engles, M. Moonen, and H. De Man, “Joint compensation of IQ imbalance and frequency offset in OFDM systems,” in Proc. IEEE Globecom, Dec. 2003, pp. 2365-2369.
[8] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[9] S. Fouladifard and H. Shafiee, “Frequency offset estimation in OFDM systems in presence of IQ imbalance,” in Proc. IEEE ICC, May 2003, vol. 3, pp. 2071-2075.
[10] F. Horlin, A. Bourdoux, L. Van der Perre, “Low-complexity EM-based joint acquisition of the carrier frequency offset and IQ imbalance,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2212-2220, June 2008.
[11] J. Y. Yu., M. F. Sun, T. Y. Hsu, and C. Y. Lee, “A novel technique for I/Q imbalance and CFO compensation in OFDM systems,” in Proc. IEEE ISCAS, May 2005, pp. 6030-6033.
[12] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399-1410, Dec. 1995.
[13] G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 673-680, Mar. 2005.
[14] K. Y. Sung, C. C. Chao, “Estimation and compensation of I/Q imbalance in OFDM direct-conversion receivers,” IEEE Trans. Signal Processing, vol. 3, no. 3, pp. 438-453, June 2009.
[15] S. De Rore, E. Lopez-Estraviz, F. Horlin, and L. Van der Perre, “Joint estimation of carrier frequency offset and IQ imbalance for 4G mobile wireless systems,” in Proc. IEEE ICC, June 2006, pp. 2066-2071.
[16] F. Horlin, S. De Rore, E. Lopez-Estraviz, F. Naessens, and L. Van der Perre, “Impact of frequency offsets and IQ imbalance on MC-CDMA reception based on channel tracking,” IEEE J. Select. Areas Commun., vol. 24, no. 6, June 2006.
[17] Sebastien Simoens, Marc de Courville, Francois Bourzeix, Paul de Champs, “New I/Q imbalance modeling and compensation in OFDM systems with frequency offset,” Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 15-18, Sept. 2002.
[18] J. Tubbax, B. Come, L. Van der Perre, L. Deneire, S. Donny, M. Engels, “Compensation of IQ imbalance in OFDM systems,” in Proc. IEEE Int. Conf. Commun., May 2003, pp. 3403-3407.
[19] B. Razavi, “Design consideration for direct-conversion receivers,” IEEE Trans. Circuit Syst. II, vol. 44, no. 6, pp. 428-435, June 1997.
[20] E. Tsui and J. Lin, “Adaptive IQ imbalance correction for OFDM systems with frequency and timing offsets,” in Proc. IEEE Global Telecommun. Conf., Nov. 2004, pp. 4004-4010.
[21] G. T. Gil, I. H. Sohn, J. K. Park, and Y. H. Lee, “Joint ML estimation of carrier frequency, channel, I/Q mismatch, and DC offset in communication receivers,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 338-349, Jan. 2005.
[22] H. Lin, T. Adachi, and K. Yamashita, “Carrier frequency offset and I/Q imbalances compensation in OFDM systems,” in Proc. IEEE Global Telecommun. Conf., Nov. 2007, pp. 2883-2888.
[23] M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2335-2344, Oct. 2001.
[24] M. Luise and R. Reggiannini, “Carrier frequency acquisition and tracking for OFDM systems,” IEEE Trans. Commun., vol.44, pp. 1590-1598, Nov. 1996.
[25] C. H. Hsu, C. F. Wu and C. K. Wang, “FPGA prototype for WLAN OFDM baseband with STPE of I/Q mismatch self calibration algorithm,” in Proc. Asian Sold-state Circ. Conf., pp. 509-512, Nov. 2005.
[26] T. Pollet, M. van Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise,” IEEE Trans. Commun., vol. 43, pp. 191-193, Apr. 1993.
[27] D. Tandur and M. Moonen, “Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5246-5252, Nov. 2007.
[28] S. L. Su and Y. J. Chiu, “Adaptive IQ imbalance compensation scheme with frequency offset for communication channel,” in Proc. Consumer Commun. Netw. Conf., Jan. 2006, pp. 1038-1042.
[29] A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalance in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3257-3268, Aug. 2005.
[30] C. Muschallik, “Influence of RF oscillators on an OFDM signal,” IEEE Trans. Consumer Electron., vol. 41, pp. 592-603, Aug. 1995.
[31] N. T. Hieu, H. G. Ryu, C. X. Wang, and H. H. Chen, “The impact of the I/Q mismatching errors on the BER performance of OFDM communication systems,” in Proc. IEEE Int. Conf. Commun., Jun. 2007, pp. 5423-5427.
[32] T. Liu and X. Zhou, “Joint blind estimation of symbol timing offset and carrier frequency offset for OFDM systems with I/Q imbalance,” IEICE Electron. Express, vol. 6, no. 8, pp. 443-448, Mar. 2009.
[33] T. Liu and H. Li, “Blind carrier frequency offset estimation in OFDM systems with I/Q imbalance,” Signal Processing, vol. 89, pp. 2286-2290, Nov. 2009.
[34] H. Lin, X. Zhu, and K. Yamashita, “Hybrid domain compensation for analog impairments in OFDM Systems,” in Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, Dec. 2008, pp. 1-5.
[35] H. Lin, Xu Zhu, and K. Yamashita, “Pilot-aided low-complexity CFO and I/Q imbalance compensation for OFDM systems,” in Proc. IEEE ICC, May 2008, pp. 713-717.
[36] D. Tandur and M. Moonen, “MIMO OFDM systems with digital RF impairment compensation,” Signal Processing, vol. 90, pp. 2965-2980, Nov. 2010.