簡易檢索 / 詳目顯示

研究生: 陳紹平
Chen, Shao-Ping
論文名稱: 氫離子源輔助濺鍍多層富矽氧化物/二氧化矽發光二極體之研究
Research of Silicon-Rich Oxide/Silicon Oxide Multilayers Based Light Emitting Diode by Hydrogen Ion-Source Assisted Sputtering
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 氫離子源發光二極體電致發光光致發光
外文關鍵詞: hydrogen ion source, Light emitting diode, EL, PL
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氫離子源輔助濺鍍製作成多層富矽氧化物(Silicon-rich oxide, SRO)/二氧化矽發光二極體,富矽氧化物的發光機制可分為奈米矽團簇和缺陷發光(E` center,NBOHC)兩大類。
    藉由光致發光(Photoluminescence, PL)、拉曼光譜(Raman)、X光光電子光譜(X-ray Photoelectron Spectrometer, XPS)等分析來討論加入不同氫離子源電壓後其奈米矽團簇尺寸大小的變化。發現利用離子源的能量,能使矽原子聚合成奈米矽團簇並產生大量的矽氧發光缺陷,進而提升多層富矽氧化物/二氧化矽發光二極體電致發光效率。
    氫離子源116V多層SRO/SiO2發光二極體,功率30W時,EL強度增強了15倍,發光效率提高了6倍之多。發光機制主要透過E` center和NBOHC 兩種發光缺陷進行輻射復合。
    低溫量測多層SRO/SiO2發光二極體的過程中,隨著溫度下降,發光缺陷輻射復合率增加,載子捕獲截面積變小,無離子源濺鍍之元件EL強度達到最大值在250K;氫離子源電壓116V之元件EL強度達到最大值在123K。

    In our research, we fabricated SRO/SiO2 multilayer based device by hydrogen ion-source assisted sputtering.The luminescence mechanism of SRO were silicon nano-clusters and defect (E` center,NBOHC).
    The size of silicon nano-clusters with different hydrogen anode voltage by photoluminescence, raman and x-ray photoelectron spectrometer were discussion. Ion source provided energy to silicon atoms, and aggregated into silicon nano-clusters. Besides, it also produced more oxygen related defects, which improved EL efficiency .
    For hydrogen anode votage 116V, EL intensity increased 15 times,and EL efficiency enhanced 6 times when the power was operated at 30W. The EL luminescence mechanism of radiative recombination was through E` center and NBOHC.
    Defect recombination rates increased,and trap cross section decreased with the decreasing of temperature.For non ion source device, EL intensity reached maximum at 250K; For hydrogen anode votage 116V, EL intensity reached maximum at 123K

    摘要 I Extended Abstract II 誌謝 XVII 圖目錄 XXI 表目錄 XXVI 第一章、緒論 1 1-1前言 1 1-2研究動機 2 1-3論文架構 3 第二章、文獻回顧與理論基礎 4 2-1奈米矽晶材料特性 4 2-1-1 矽量子點特性 4 2-1-2 量子侷限效應 5 2-1-3 矽氧化形態 6 2-2矽基發光二極體 9 2-2-1 光致發光(PL)原理 9 2-2-2 電致發光(EL)原理 9 2-2-3 發光二極體(Light emitting Diode) 9 2-3 氫離子源輔助濺鍍系統 11 2-3-1 氫離子源輔助鍍膜系統[15] 11 2-3-2 氫離子源運作原理 14 第三章、實驗步驟儀器量測 16 3-1 實驗流程與架構 16 3-1-1 矽基板準備與清洗 16 3-1-2 成長熱氧化層 18 3-1-3 主動層薄膜鍍製 19 3-1-4 主動層薄膜退火 21 3-1-5 第一道黃光微影 22 3-1-6 ICP 乾蝕刻 23 3-1-7 AZO 薄膜鍍製 24 3-1-8 第二道黃光微影 25 3-1-9 AZO wet eching 26 3-1-10 第三道黃光微影 27 3-1-11 E-beam鍍電極 28 3-1-12 電極Lift-off 28 3-1-13 LED 封裝打線 29 3-2電性量測分析 30 3-2-1 電容-電壓量測(Capacitance-voltage measurement) 30 3-2-2 電流-電壓量測(Current-voltage measurement) 30 3-2-3 電容-時間量測(Capacitance-time measurement) 31 3-2-4 電致發光EL量測 31 3-3物性材料分析 32 3-3-1 穿透式電子顯微鏡分析(TEM) 32 3-3-2 高解析X光光電子能譜分析(XPS) 34 3-3-3 光致螢光分析 PL & 拉曼光譜(Raman)36 3-3-5 傅立葉轉換紅外光譜(FTIR) 37 第四章、結果與討論 38 4-1氫離子源輔助濺鍍對SRO/SiO2多層薄膜光學性質的影響 39 4-1-1 氫離子源對SRO/SiO2多層薄膜PL影響 39 4-1-2 不同氫離子源下,SRO/SiO2多層薄膜FTIR之分析 42 4-1-3 結論 43 4-2 氫離子源輔助濺鍍對退火SRO/SiO2多層薄膜光學性質的影響 44 4-2-1 氫離子源對退火SRO/SiO2多層薄膜中之PL 45 4-2-2 氫離子源對退火SRO/SiO2多層薄膜中之拉曼分析 46 4-2-3 氫離子源對退火SRO/SiO2 多層薄膜中XRD之分析 47 4-2-4 氫離子源對退火SRO/SiO2 多層薄膜中TEM之分析 48 4-2-5 氫離子源對退火SRO/SiO2 多層薄膜中XPS之分析 50 4-2-6 氫離子源對退火SRO/SiO2多層薄膜中之FTIR 55 4-2-7 不同流量氫氣之離子對退火SRO/SiO2多層薄膜影響與探討 56 4-2-8 氫離子源對SRO/SiO2多層薄膜的影響與討論 58 4-2-9 結論 59 4-3氫離子源輔助濺鍍對多層SRO/SiO2發光二極體光電特性的影響 60 4-3-1 多層SRO/SiO2發光二極體之C-V特性 60 4-3-2 多層SRO/SiO2發光二極體電荷保存時間特性比較 62 4-3-3 多層SRO/SiO2發光二極體之EL特性 66 4-3-4 多層SRO/SiO2發光二極體EL發光效率比較 73 4-3-5 多層SRO/SiO2發光二極體J-V 特性之影響 74 4-3-6 多層SRO/SiO2發光二極體F-N tunneling之影響 76 4-3-7 多層SRO/SiO2發光二極體之載子傳輸與發光機制 78 4-3-8 多層SRO/SiO2發光二極體EL和PL特性之比較 81 4-3-9 低溫對多層SRO/SiO2發光二極體電激發光之影響 84 4-3-10 結論 90 第五章 總結論與未來規劃 91 5-1 總結論 91 5-2 未來規劃 91 Reference 92

    [1] A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G.C. Cardinali, G. Amato,G. Lerondel, D. Midellino,” TEM characterisation of porous silicon”,Micron,vol 31,pp 223–230(2000).
    [2]A.G. Cullis, and L. T. Canham,”Visible light emission due to quantum size effect in highly porous crystalline silicon”, Nature,vol.353,pp 335-338(1991)
    [3]Z. H. Lu,D.J. Lockwood,and J.M.Baribeau,”Quantum confinement and light emission in Si/SiO2 supperlattice”,Nature ,vol. 378,pp.258(1995).
    [4] M. Modreanu, M. Gartner, E. Aperathitis, N. Tomozeiu, M. Androulidaki,D. Cristea, Paul Hurley,” Investigation on preparation and physical properties of nanocrystalline Si/SiO2 superlattices for Si-based light-emitting devices”, Physica E,vol. 16 ,pp 461-466(2003).
    [5]C. Huh,K. H. Kim, B. K. Kim, W. Kim, H. Ko, C. J.Choi, and G. Y. Sung,“Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple luminescent structure”, Advance Material, vol. 22, pp5058-5062(2010).
    [6] X. L. Wu and F. S. Xue,” Optical transition in discrete levels of Si quantum dots”, Appl. Phys. Lett., Vol. 84,pp.2808(2004).
    [7] 蕭竹芸, 矽奈米晶包埋於富矽氧化物薄膜之合成與光電特性研究, 國立成功大學, 2013
    [8] 蘇冠瑋, 低能離子束輔助濺鍍奈米矽晶氧化矽薄膜之研究, 國立成功大學, 2012
    [9] T. Uchino, M. Takahashi, and T. Yoko, “Formation and decay mechanisms of electron-hole pairs in amorphous SiO2,” Appl. Phys. Lett.,vol. 80, 1147 (2002)
    [10] S. Guha “Characterization of Si+ ion-implanted SiO2 films and silica glasses,” J. Appl. Phys., Vol. 84, 5210, (1998)
    [11] Bo-Han Lai, Chih-Hsien Cheng, and Gong-Ru Lin,” Electroluminescent wavelength shift of Si-rich SiOx based blue and green MOSLEDs induced by O/Si composition Si-QD size variations”, Opt Mat Express, Vol. 3,pp 166-175(2013).
    [12] Chih-Hsien Cheng, Yu-Chung Lien, Chung-Lun Wu, and Gong-Ru Lin,” Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency”, Opt Express, Vol. 21,pp392-403(2013).
    [13] Yi-Hao Pai, Chung-Hsiang Chang, and Gong-Ru Lin,” Composition Optimization and Phase Transformation of Si-Nanocrystal-Doped SiOx for Enhancing Luminescence From MOSLED” , IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 15,pp1387-1392(2009).
    [14] G. Franzò, M. Miritello, S. Boninelli, R. Lo Savio, M. G. Grimaldi, F. Priolo, F. Iacona, G. Nicotra, C. Spinella, and S. Coffa,” Microstructural evolution of SiO x films and its effect on the luminescence of Si nanoclusters”, J. Appl. Phys”,vol. 104,pp. 094306(2008).
    [15] 莊秉儒, 氫離子源輔助濺鍍富矽氧化物於記憶體之研究,國立成功大學, 2013
    [16] H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “end-Hall ion source”, J. Vacuum Science and Technology, A5, 2081-2084 (1987).
    [17] H. R. Kaufman and R. S. Robinson, “Operation of broad-beam sources”, Commonwealth Scientific Corporation, Alexandria, p. 57 (1987)
    [18] Y Kanzaway, S Hayashiz and K Yamamotoz, “Raman spectroscopy o f Si-rich SiO2 films: possibility of Si cluster formation”, J. Phys.: Condens. Matter,vol 8,pp4823-4835(1996)
    [19] M. Aceves-Mijares, A. A. Gonz´alez-Fern´andez, R. L´opez-Estopier, A. Luna-L´opez,D. Berman-Mendoza, A.Morales,C. Falcony, C. Dom´ınguez, and R.Murphy-Arteaga,
    ” On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition”, Journal of Nanomaterials ,vol. 2012, Article ID 890701, 11 pages
    [20] Chung-Hsiang Chang, Yi-Hao Pai, Jr-Hau He, Gong-Ru Lin ,” Wavelength-tunable blue photoluminescence of <2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD”, Acta Materialia,vol. 58,pp. 1270-1275(2010)
    [21] J. A. Luna-López, J. Carrillo-López ,” FTIR and photoluminescence of annealed silicon rich oxide films” , Superficies y Vacío ,vol. 22,pp. 11-14(2009)
    [22] Device Applications of Silicon Nanocrystals and Nanostructures(2009)
    [23] S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev,G. Van Tendeloo and V. V. Moshchalkov,” Classification and control of the origin of photoluminescence from Si nanocrystals”,Nature Nanotechnology ,vol. 3,pp174-178(2008)
    [24] N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca,” Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition”, J. Appl. Phys, vol 101, pp.113510 (2007)
    [25] Leonid Khriachtchev, Markku Räsänen, Sergei Novikov, and Lorenzo Pavesi,”Systematic correlation between Raman spectra, photoluminescence intensity, and absorption coefficient of silica layerscontaining Si nanocrystals”, Appl. Phys. Lett., vol 85, pp1511(2004).
    [26] Nesheva D, Raptis C, Perakis A, Bineva I, Aneva Z, Levi Z, et al. ,“J. Appl. Phys”,vol. 92,pp. 4678–83(2002).
    [27] Temkin RJ,” J. Non-Cry Solids” ,vol. 17,pp. 215–30(1975).
    [28] Bhavin N. Jariwala, Nicolaas J. Kramer, M. Cristina Petcu, David C. Bobela, M. C. M. van de Sanden,Paul Stradins,§ Cristian V. Ciobanu, and Sumit Agarwal,” Surface Hydride Composition of Plasma-Synthesized Si Nanoparticles”, J. Phys. Chem. C ,vol. 115, pp20375–20379(2011).
    [29] H. Okamoto, “O-Si (oxygen-silicon)”, Journal of Phase Equilibria and Diffusion, vol. 28, pp. 309 (2007).
    [30] G. Mariotto, G. Das, A. Quaranta, G. Della Mea, F. Corni, and R. Tonini,” Vibrational spectroscopy study of Ar + -ion irradiated Si-rich oxide films grown by plasma-enhanced chemical vapor deposition” , J. Appl. Phys., vol 97,pp113502(2005)
    [31] Chang-Hee Cho, Baek-Hyun Kim, Tae-Wook Kim, Seong-Ju Park, Nae-Man Park et al, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film” , Appl. Phys. Lett.,Vol 86, pp 143107(2005)
    [32] L Ding, T P Chen, Y Liu1, M Yang, J I Wong, K Y Liu,F R Zhu and S Fung ,”The influence of the implantation dose and energy on the electroluminescence of Si+-implanted amorphous SiO2 thin films”, Nanotechnology,vol 8,pp 455306-455311(2007)
    [33] Nae-Man Park, Tae-Soo Kim, and Seong-Ju Park,” Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Appl. Phys. Lett., vol 78, pp2575-2577(2001)
    [34] Gong-Ru Lin, Chung-Hsiang Chang,Chih-Hsien Cheng, Chih-I Wu, and Po-Sheng Wang,” Transient UV and Visible Luminescent Dynamics of Si-Rich SiOx Metal–Oxide–Semiconductor Light-Emitting Diodes”, IEEE Photonics Journal,vol 4,pp1351-1363(2012)
    [35]R.H. Fowler and L. W. Nordheim,”Elrctron emission in intense electric field,”Proc. R. Soc. London, Ser. A ,vol 119,pp173(1928)
    [36] C. L. Heng, Y. Chen, Z. C. Ma, W. H. Zong, and G. G. Qin, “Electroluminescence from semitransparent Au film/ SiO 2 /(amorphous- Si/SiO2 )superlattice/ p- Si structure”, J. Appl. Phys. ,vol 89,pp5682-86(2001)
    [37]Wa Li Zhang , Sam Zhang , Ming Yang, Zhen Liu, ZhanHong Cen, Tupei Chen, Dongping Liu , “Electroluminescence of as-sputtered silicon-rich SiOx films”, Vacuum , vol. 84, pp.1043–1048(2010).
    [38] A. Morales-Sánchez, K. Monfil-Leyva, A. A. González, M. Aceves-Mijares, J. Carrillo, J. A. Luna-López, C.Domínguez, J. Barreto, and F. J. Flores-Gracia,” Strong blue and red luminescence in silicon nanoparticles based light emitting capacitors”, Appl. Phys. Lett., vol 99,pp 171102(2011)
    [39] A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara,” Temperature and Current Dependent Capture of Injected Carriers in InGaN Single-Quantum-Well Light-Emitting Diodes”, Phys. Stat. Sol. (a), vol. 192,pp44-48(2002)
    [40] F. Messina, L. Vaccaro, and M. Cannas,” Generation and excitation of point defects in silica by synchrotron radiation above the absorption edge” , Phys. Rev. B,vol. 81,pp 035212 (2010)
    [41] G. V. Hansson,W.-X. Ni, C.-X. Du, A. Elfving, and F. Duteil,” Origin of abnormal temperature dependence of electroluminescence from Er/O-doped Si diodes”, Appl. Phys. Lett.,vol. 78,pp2104-2106(2001).
    [42] Bo-Han Lai, Chih-Hsien Cheng, and Gong-Ru Lin,” Electroluminescent wavelength shift of Si-rich SiOx based blue and green MOSLEDs induced by O/Si composition Si-QD size variations”, Opt. Express, Vol. 3,pp166-175(2013)

    無法下載圖示 校內:2024-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE