| 研究生: |
邱嘉仁 Chiou, Jia-Ren |
|---|---|
| 論文名稱: |
應用於心臟聽診之心電及心音訊號同步監控系統 An Electrocardiography and Phonocardiogram Synchronous Monitoring System for Cardiac Auscultation |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 心臟聽診 、放大器 、高通三角積分調變器 、數位訊號處理電路 、生理訊號視覺化 |
| 外文關鍵詞: | cardiac auscultation, amplifier, high-pass sigma–delta modulator, digital signal processing, bio-signal visualization |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於心血管系統的檢測與判別中,心臟聽診是一個相當快速且基本的診斷方式。心音主要由第一心音與第二心音所構成,因此在有其他外界雜音與額外的心雜音干擾下,區別第一心音與第二心音是一個困難且重要的議題。為了快速、有效地區別心音種類,本論文提出了一個心電與心音之同步監控系統。
此系統主要可分為兩個部分,第一部分為使用晶片方式實現的訊號感測類比前端,包含電容耦合放大器、轉導放大器、高通三角積分調變器以及數位訊號處理電路,此晶片使用標準的0.18 μm金氧複合半導體製程製造。第二部分則是將晶片感測解析後之心電及心音訊號同步以行動裝置上的軟體呈現、記錄或偵測。
在聽診時,醫生可參考在行動裝置上呈現的生理訊號並同時聽取心音訊號,以達到更有依據並有效之診斷。此系統將生理訊號視覺化且保留原本的診斷方式,希望能提升醫生聽診之效率,並後續能夠建立心電結合心音的資料庫,使得後續心臟疾病相關之學習環境與效率能夠有效的提升。
In the examination of cardiovascular system, heart sound auscultation is a fast and fundamental technique. The main components of heart sound are the first heart sound and the second heart sound. The discrimination of these heart sounds will be difficult under the impacts of additional heart sound and murmurs. In order to recognize these signals efficiently, a phonocardiogram and electrocardiography synchronous monitoring system is proposed. There are two key points in the proposed system. The first is the chip implementation including capacitor coupled amplifier, transimpedance amplifier, high-pass sigma–delta modulator, and digital signal processing block. The chip in the system is fabricated in the 0.18 μm standard complementary metal–oxide–semiconductor process. The second part realizes a software application on smartphone for heart-related physiological signals recording, display, and detection. During the auscultation examination, the doctors may refer to these physiological signals displayed on smartphone and simultaneously listen to the heart sound for diagnosing the potential heart disease. By taking advantage of signal visualization and keeping the original diagnosis procedure, the uncertainty existing in heart sounds can be eliminated, and the training period of auscultation skills can be reduced.
[1] World health organization. “Top 10 causes of death.”
http://origin.who.int/gho/mortality_burden_disease/causes_death/top_10/en/
[2] 3M Littmann. Cardiac Auscultation. (2017). [Online]. Available: http://multimedia.3m.com/mws/media/1372905O/3mtm-littmannr-stethoscopes-auscultation-posters.pdf
[3] 維基百科. “心音.” https://zh.wikipedia.org/wiki/%E5%BF%83%E9%9F%B3
[4] 高點建國醫護網. “內科-心音,臨床醫學教室.”
http://doctor.get.com.tw/m/Journal/detail.aspx?no=406299
[5] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New York, McGraw-Hill Education, 2017.
[6] D. Johns, K. W. Martin, Analog integrated circuit design, 2nd ed. Hoboken, NJ: Wiley, 2011.
[7] Q. Fan, K. A. A. Makinwa, and J. H. Huijsing, Capacitively-Coupled Chopper Amplifiers. Cham: Springer International Publishing, 2018.
[8] M. Belloni, E. Bonizzoni, A. Fornasari, and F. Maloberti, “A micropower chopper-CDS operational amplifier,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2521–2529, Dec. 2010. [9] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 W 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1534–1543, Jul. 2011.
[10] J. D. Bronzino, The Biomedical Engineering Handbook, 2nd ed. Boca Raton, FL: CRC, 2000.
[11] W. J. Tompkins, Biomedical digital signal processing. Englewood Cliffs, N.J.: Prentice Hall, 2000.
[12] K. Phua, J. Chen, T. H. Dat, and L. Shue, “Heart sound as a biometric,” Pattern Recognit., vol. 41, no. 3, pp. 906-919, Mar. 2008.
[13] F. Arvin, S. Doraisamy, and E. S. Khorasani, “Frequency shifting approach towards textual transcription of heartbeat sounds,” Biol. Proced. Online, vol. 13, no. 7, Oct. 2011.
[14] M. F. C. Monteiro, H. Klimach and S. Bampi, “High linearity and large output swing sub-Hz pre-amplifier for portable biomedical applications,” in 2014 27th Symp. on Integr. Circuits and Syst. Des. (SBCCI), Aracaju, 2014, pp. 1-7.
[15] M. de Medeiros Silva and L. B. Oliveira, “Regulated common-gate transimpedance amplifier designed to operate with a silicon photomultiplier at the input,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61,no. 3, pp. 725–735, Mar. 2014
[16] Z. Chang and W. M. C. Sansen, “Stability and noise performance of constant transimpedance amplifier with inductive source,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 264–271, 1989.
[17] CUI Inc, CME-1538-100LB. (2015). [Online]. Available:
https://www.cui.com/product/resource/cme-1538-100lb.pdf
[18] J. M. de la. Rosa, R. del. Rio, CMOS Sigma-Delta Converters: Practical Design Guide. Chichester: Wiley, 2013.
[19] B. Boser and B. Wooley, “The design of sigma-delta modulation analog-to-digital converters,” IEEE J. Solid-state Circuits, vol. 23, pp. 1298-1308, Dec. 1988.
[20] S. Hein and A. Zakhor, “On the stability of sigma–delta modulators,” IEEE Trans. Signal Processing, vol. 41, no. 7, pp. 2322–2348, Jul. 1993.
[21] S. Pavan, R. Schreier, G. C. Temes, UNDERSTANDING DELTA-SIGMA DATA CONVERTERS. Chichester: JOHN WILEY, 2017.
[22] R. D. Río, F. Medeiro, B. P. Verdú, J. M. de la. Rosa, A. R. Vazquez, CMOS Cascade Sigma-delta Modulators for Sensors and Telecom. Dordrecht: Springer, 2006.
[23] S. Y. Lee, C. Y. Chen, J. H. Hong, R. G. Chang, and M. P. H. Lin, “Automated synthesis of discrete-time sigma-delta modulators from system architecture to circuit netlist,” Microelectronics J., vol. 42, no. 2, pp. 347-357, Feb. 2011.
[24] H. Zare-Hoseini, I. Kale, and O. Shoaei, “Modeling of switched-capacitor delta-sigma modulators in simulink,” IEEE Trans. Instrum. Meas., vol. 54, no. 4, pp. 1646–1654, Aug. 2005.
[25] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, “Behavioral modeling of switched-capacitor sigma-delta modulators,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 50, no. 3, pp. 352–364, Mar. 2003.
[26] M. A. Nidhi, S. Jackuline, J. Jeevitha, ‘‘A new architecture for the generation of picture based CAPTCHA: A level constrained CSE low power synthesis methodology for fixed point FIR filters,” 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol.6, no., pp.386, 389, 8-10 Apr. 2011.
[27] S. Mitra, K. Hirano, ‘‘Digital all-pass networks,” IEEE Transactions on Circuits and Systems, vol.21, no.5, pp. 688- 700, Sep. 1974
[28] Maxim Integrated. Determining Clock Accuracy Requirements for UART Communications. (2003). [Online]. Available: http://www.eecs.umich.edu/courses/eecs373.w05/lecture/AN2141.pdf
[29] Yamaichi Electronics. IC51-0844-401-1 IC test socket, clam shell PLCC-84. (2015). [Online]. Available:
https://www.distrelec.de/Web/Downloads/1_/en/onYAMAICHI_IC-Testsockel-C51_en.pdf
[30] J. Wartak, Phonocardiology: Integrated Study of Heart Sounds and Murmurs. New York, NY, USA: Harper & Row, 1972.
[31] H. Ren, H. Jin, C. Chen, H. Ghayvat and W. Chen, “A Novel Cardiac Auscultation Monitoring System Based on Wireless Sensing for Healthcare,” IEEE J. Transl. Eng. Health Med., vol. 6, pp. 1-12, 2018.
[32] J. Xu et al., “A 36 μW 1.1 mm2 Reconfigurable Analog Front-End for Cardiovascular and Respiratory Signals Recording,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 4, pp. 774-783, Aug. 2018.
[33] J. Xiang, Y. Dong, X. Xue and H. Xiong, “Electronics of a Wearable ECG With Level Crossing Sampling and Human Body Communication,” IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 1, pp. 68-79, Feb. 2019.
[34] Eko. “DUO.” ekohealth.com. https://ekohealth.com/duo/
[35] C. Landgraf, P. Goolkasian and T. Crouch, “Wireless Cardiac Sensor,” U.S. Patent Appl. 20180256061A1, Sept. 13, 2018.