簡易檢索 / 詳目顯示

研究生: 黃健富
Wong, Kian-Fu
論文名稱: 具平順模式轉換之非反向升降壓轉換器
A Smooth Mode Transition Non-Inverting Buck-Boost Converter
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 106
中文關鍵詞: 直流-直流轉換器升降壓非反向平順模式轉換
外文關鍵詞: dc-dc converter, buck-boost, non-inverting, smooth mode transition
相關次數: 點閱:83下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在可攜式電子產品中,大部分鋰電池供電範圍介於2.7~4.2V,對於輸入電壓為3.3V的可攜式裝置內部電路而言,在整個電池的供電範圍中,需要一個同時具有升壓及降壓功能的直流-直流升降壓轉換器,方可達到完整的效率利用。
    本論文第一顆晶片實現並驗證了非反向升降壓轉換器具有升壓和降壓的功能。從量測結果可知本晶片可將鋰電池的電壓範圍2.7~4.2V經轉換送出3.6V的輸出電壓給電子元件使用,切換頻率1MHz,負載電流200mA。本晶片使用國家晶片系統中心(National Chip Implementation Center, CIC)提供的TSMC 0.35um 2P4M 3.3V Mixed Signal製程,晶片面積為1.494 x 1.155mm2。
    本論文第二顆晶片除了實現非反向升降壓轉換器具升壓和降壓的功能,並提出Continuity mode機制,在升壓和降壓轉換區域中提供平順的模式轉換。解決了傳統在此區域因Pulse skipping所面臨的不連續問題。相較於相關研究提出的Buck-boost mode或Buffer mode,本論文之Continuity模式在每個切換週期從4功率開關減少為僅需利用2功率開關作切換,降低Switching losses;同時此模式就如操作在Buck mode,其電感電流等同於負載電流,亦減少Conduction losses。因此本論文轉換器的整體效能獲得提升,最大轉換效率可達95%。從模擬結果驗證了隨著鋰電池電壓範圍從4.2V下降至2.7V,本晶片可依序通過Buck mode、Continuity mode和Boost mode送出一穩定的輸出電壓3.3V。其切換頻率1MHz,負載電流100~300mA。本晶片使用CIC提供的TSMC 0.18um 1P6M 3.3V Mixed Signal製程,晶片面積為1.4 x 1.5mm2。

    In the portable electronic products, most of the Li-ion battery output voltages are between 2.7~4.2V, for supplying electronic devices a regulated voltage of 3.3V, we must design a dc-dc buck-boost converter with boost and buck function to convert power effectively.
    The first IC implements a Non-inverting Buck-boost converter with Boost and Buck function. By the measurement results, this IC can supply electronic devices a regulated voltage of 3.6V from Li-ion battery of 2.7~4.2V when the switching frequency is 1MHz and the load current is 200mA. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35um 2P4M 3.3V Mixed Signal polycide process, patronized by National Chip Implementation Center(CIC). The die area of the chip is 1.494 x 1.155mm2.
    The second IC implements a Non-inverting Buck-boost converter, which is not only operate in Boost and Buck mode, but also a Continuity Mode (CM) for smooth transition between buck and boost modes. The pulse skipping problem in transition region was solved, thus keep continuity in this region. The proposed technique not only provides smooth transition, but also minimizes the switching and conduction losses. Accordingly the proposed design is better than the conventional Buck-boost or Buffer mode. It is just like to operate in Buck mode, the number of switches used in one switching cycle is reduced from four to two, and the inductor current is reduced to close to the value of load current. Therefore, the efficiency of converter was improved, the maximum conversion efficiency can achieve as high as 95%. By the simulation results, this IC was desired operate in Buck mode, Continuity mode(remove the discontinuity region) or Boost mode to supply electronic devices a regulated voltage of 3.3V according Li-ion battery of 2.7~4.2V when the switching frequency is 1MHz and the load current is 100~300mA. The chip was fabricated by TSMC 0.18um 1P6M 3.3V Mixed Signal polycide process, patronized by CIC. The die area of the chip is 1.4 x 1.5mm2.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 3 1.3 論文架簡介 5 第二章 升降壓轉換器介紹 6 2.1 傳統升降壓轉換器介紹 6 2.1.1 反向升降壓轉換器(Inverting buck-boost converter) 6 2.1.2 Cuk轉換器 7 2.1.3 反馳式轉換器(Flyback converter) 9 2.1.4 升壓轉換器串聯線性穩壓器(Boost converter cascade with low dropout regulator) 10 2.1.5 SEPIC轉換器(Single ended primary inductor converter) 11 2.1.6 升壓轉換器接降壓轉換器(Boost converter cascade with buck converter) 11 2.1.7 非反向升降壓轉換器(Non-inverting buck-boost converter) 12 2.2 非反向升降壓轉換器相關研究 15 2.2.1 H-bridge 15 2.2.2 Two mode 20 2.2.3 Discontinuity problem 25 2.2.4 Overlapping技術 27 2.2.5 Level shift技術 29 2.2.6 RAIC技術 34 2.2.7 市售IC A8440技術 40 2.3 功率開關電位端考量 46 第三章 平順模態轉換非反向升降壓轉換器介紹 48 3.1 轉換器操作原理 48 3.2 平順模態轉換介紹 49 第四章 平順模態轉換非反向升降壓轉換器系統設計 52 4.1 系統設計考量 52 4.2 補償器設計與系統模擬結果 56 第五章 電路設計與模擬,佈局及量測設置 60 5.1 各子電路設計流程 61 5.1.1 時脈訊號與三角波產生器(Clock & Triangle wave Generator)61 5.1.2 兩級式誤差放大器設計(Two-stage op Amplifier) 63 5.1.3 三角波產生器中兩級式誤差放大器(Two-stage op Amplifier for triangle wave generator) 64 5.1.4 磁滯比較器(Hysteresis comparator) 65 5.1.5 非重疊相位產生器(Deadtime control) 66 5.1.6 閘級驅動器(Gate driver) 69 5.1.7 緩啟動器(Soft-start) 69 5.1.8 Level shifter 70 5.2 提出之電路設計 71 5.2.1 Continuity Mode 71 5.2.2 2-3 Mode Detector 77 5.2.3 Body Choose 77 5.3 全電路模擬結果 79 5.4 電路佈局 88 5.5 量測設置 89 第六章 IC量測結果 90 6.1 量測項目及方法 91 6.2 下線IC量測結果與討論 93 第七章 結論與未來研究方向 99 7.1 總結與貢獻 99 7.2 未來研究方向 100 參考文獻 101 發表之國際期刊論文 103

    [1]Jingquan Chen; Maksimovic, D.; Erickson, R, "Buck-boost PWM converters having two independently controlled switches", in Proc. IEEE PESC, pp. 17-21, 2001.
    [2]B. Sahu and GA Rincón-Mora, “A low voltage, dynamic, non-inverting synchronous buck-boost converter for portable applications,” IEEE. Trans. Power Electronics, vol. 19, no. 2, pp. 443-452, 2004.
    [3]A. Chakraborty, A. Khaligh, and A. Emadi, “Combination of buck and boost modes to minimize transients in the output of a positive buck-boost converter,” 32nd Annual IEEE Conference on Industrial Electronics, pp. 2372-2377, 2006.
    [4]R. Paul, D. Maksimovic,” Smooth Transition and Ripple Reduction in 4-Switch Non-Inverting Buck-Boost Power Converter for WCDMA RF Power Amplifier ”, IEEE ISCAS, pp. 3266-3269, 2008.
    [5]R. Paul, D. Maksimovic, "Analysis of PWM nonlinearity in non-inverting buck-boost power converter," in Proc. IEEE PESC, pp. 3741-3747, 2008.
    [6]Wang Langyuan, Wu Xiaobo, Lou Jiana, "A Multi-Mode Four-Switch Buck-Boost DC/DC Converter" IEEE APPEEC, pp. 1-4, 2009.
    [7]Chin-Wei Chang, Chia-Ling Wei, "Single-inductor four-switch non-inverting buck-boost dc-dc converter" IEEE VLSI-DAT, pp. 1-4, 2011.
    [8]Schaltz. E, Rasmussen. P.O, Khaligh. A, “Non-Inverting Buck-Boost Converter for Fuel Cell Applications” in Industrial Electronics, pp. 855-860, 2008.
    [9]B. Sahu and G.A. Rincon-Mora, "A high efficiency WCDMA RF power amplifier with adaptive, dual mode buck-boost supply and bias-current control," IEEE Microwave and Wireless Components Letters, vo/.J 7, issue 3, pp. 238-240, 2007.
    [10]B. Sahu and G.A. Rincon-Mora, "A High-Efficiency, Dual-Mode, Dynamic, Buck-Boost Power supply IC for portable applications" VLSI Design, pp. 858-861, 2005.
    [11]Maxim application note AN-l2 05, "W-CDMA Power Supply Dramatically Improves Transmit Efficiency" - http://www.maximic.com /appnotes.cfm/any k/I205
    [12]R. W. Erickson, Fundamentals of Power Electronics, 2nd edition New York: Chapman and Hall, 2001.
    [13]David M. Dwelley, Trevor W. Barcelo, “Control circuit and method for maintaining high efficiency in a buck-boost switching regulator,” US Patent 6,166,527
    [14]Gaboriault M, Notman A,"A high efficiency, non-inverting, buck-boost DC-DC converter", IEEE APEC, vol. 3, pp. 1411- 1415, 2004.
    [15]TPS63000: “High Efficient Single Inductor Buck-Boost Converter with 1.8A Switches,” Tech. Rep., Texas Instruments.
    [16]Huan-Jen Yang, Ke-Horng Chen, and Yung-Pin Lee, “Feed-Forward Pulse Width Modulation for High Line Regulation Buck or Boost Converter,” IEEE international Symposium on Circuits and Systems – ISCAS, pp. 785-788, 2007.
    [17]Ping-Ching Huang, Wei-Quan Wu, Hsin-Hsin Ho, Ke-Horng Chen, “Hybrid Buck-Boost Feed-Forward and Reduced Average Inductor Current Techniques in Fast Line Transient and High Efficiency Buck-Boost Converter” in IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 719-730, 2010.
    [18]Biranchinath Sahu, “Integrated, dynamically adaptive supplies for linear RF power amplifiers in portable applications” Publish for PhD degree, Georgia Institude of Technology, 2004.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE