簡易檢索 / 詳目顯示

研究生: 廖偉翔
Liao, Wei-Hsiang
論文名稱: Caveolin-1變體調節TGF-β和EGF信號通路之作用
Effects of caveolin-1 variants in regulating TGF-β and EGF signaling pathways
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: 腎臟疾病上皮細胞間質轉化乙型轉化生長因子表皮生長因子微囊蛋白-1
外文關鍵詞: Kidney disease, EMT, TGF-β, EGF, Cav-1
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腎纖維化是急性腎損傷(AKI)對慢性腎臟病(CKD)的重要標誌,而據報導轉化生長因子-β1(TGF-β1)誘導的上皮-間質轉化(EMT)有助於腎纖維化的發展。表皮生長因子(EGF)可以促進細胞生長,細胞增殖和細胞分化。在許多文獻中,我們可以發現EGF和TGF-β訊息途徑之間的關聯是眾所周知的。微囊蛋白(caveolin-1,Cav-1)是小窩(caveolae)的主要外殼蛋白並與信號轉導的調控有關,儘管先前已被報導Cav-1可以抑制TGF-β在腎上皮細胞中的表達。然而,Cav-1調節TGF-β1和EGF基因表達以及TGF-β/Smad3(典型)和非Smad3(非典型)如EGF / ERK信號傳導的詳細分子機制仍不清楚。這項研究的目的是探討TGF-β與EGF之間Cav-1的交叉調節作用。犬腎臟上皮細胞(MDCK) 中穩定Cav-1的過度表達或敲除被使用於本研究。另一方面,各種Cav-1突變體(Y14D、Y14F和CSDmut)也在MDCK細胞中過度表達,以研究酪氨酸14的磷酸化或Cav-1支架結構域(CSD)是否參與TGF-β或是EGF信號的調控。通過分別模擬磷酸化或非磷酸化的氨基酸酪氨酸14來產生Y14D和Y14F。並產生了Cav-1支架結構域(CSD)突變(F92A,T95A)成為CSD失活形式。Smad3和ERK2核易位的共軛聚焦成像TGF-β和EGF下游蛋白之磷酸化用於評估TGF-β1和EGF信號的激活。對於Cav-1通過TGF-β和EGF處理對TGF-β和EGF信號轉導的影響,我們發現Cav-1的過表達抑制了Smad3和ERK2的活化和核易位,而Cav-1的敲落增加了Smad3和ERK2激活和核易位。在TGF-β與EGF之間的交互作用中,Cav-1的過度表達通過TGF-β處理抑制了ERK2活化和核易位。但是,Cav-1的過度表達反而會通過EGF處理促進Smad3活化和核易位。此外,我們透過MβCD與CSD-peptide處理來影響Cav-1功能以及與內生性CSD競爭證實了這一結果。此外,Y14D和CSDmut突變體而不是藉由Y14F抑制Smad3激活和核易位。因此,我們可以推斷出Cav-1具有抑制作用,而Cav-1的Y14磷酸化在抑制TGF-β和EGF信號傳導中起著重要的作用。

    Renal fibrosis is an important sign of acute kidney injury from chronic kidney disease. Transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) has been reported to contribute to the development of kidney fibrosis. Another growth factor, epidermal growth factor (EGF) can promote cell growth, cell proliferation and cell differentiation. Many studies have reported the association between EGF and TGF-β signal pathways. Caveolin-1 (Cav-1), the principal coat protein of caveolae, has been associated with the regulation of signal transduction. Although Cav-1 can inhibit the expression of TGF-β in renal epithelial cells, the detailed molecular mechanisms of Cav-1 regulating TGF-β and EGF gene expression and TGF-β/ Smad3 (canonical) and non-Smad3 (non-canonical) like EGF/-ERK signaling are still unclear. The aim of this study is to explore the regulatory role of Cav-1 in the crosstalk between TGF-β and EGF. Stable Cav-1 overexpression or knockdown in Madin-Darby Canine Kidney (MDCK) cells was established for this study. In addition, various Cav-1 mutants (Y14D, Y14F and CSDmut) were also overexpressed in MDCK cells to investigate whether the phosphorylated tyrosine 14 residue or the Cav-1 scaffolding domain (CSD) is involved in the regulation of TGF-β or EGF signaling. Y14D and Y14F were generated by mimicking a phosphorylated and non-phosphorylated amino acid tyrosine 14, respectively. Another CSD mutant (F92A, T95A) was generated to inactivate the signal relay of CSD. Confocal imaging of Smad3 and ERK2 nuclear translocation and Western blotting of Smad3 and ERK2 phosphorylation were used to evaluate the activation of TGF-β and EGF signaling. Regarding the effects of Cav-1 on TGF-β1 and EGF signaling after TGF-β and EGF treatment, we found that the overexpression of wild-type Cav-1 inhibited Smad3 and ERK2 activation and nuclear translocation, whereas Cav-1 knockdown increased Smad3 and ERK2 activation and nuclear translocation. Due to crosstalk between TGF-β with EGF, overexpression of wild-type Cav-1 inhibited ERK2 activation and nuclear translocation by TGF-β treatment. In contrast, the overexpression of wild-type Cav-1 promoted Smad3 activation and nuclear translocation after EGF treatment. In addition, we confirmed this result by treating the cells with MβCD and CSD-peptide to affect Cav-1 function and compete with endogenous CSD. Furthermore, the Cav-1 mutants Y14D and CSDmut but not Y14F inhibited Smad3 activation and nuclear translocation. Therefore, we infer that Cav-1 has an inhibitory role and that the phosphorylated tyrosine 14 of Cav-1 plays an important role in inhibiting TGF-β and EGF signaling.

    Abstract I 中文摘要 III Contents VI Figure contents VIII Chapter 1 Introduction 1 1.1 Transforming growth factor-beta (TGF-β) 1 1.1.1 Signaling of TGF-β 1 1.1.2 Function of TGF-β 2 1.2 Epidermal growth factor (EGF) 2 1.2.1 Signaling of EGF 2 1.2.2 Function of EGF 3 1.3 Cross-talk between TGF-β and EGF signaling pathway 3 1.3.1 Effect of TGF-β on EGF signaling pathway 4 1.3.2 Effect of EGF on TGF-β signaling pathway 4 1.4 Caveolin-1 (Cav-1) 5 1.4.1 Lipid rafts and caveolae 5 1.4.2 Structure of Cav-1 5 1.4.3 Functions of Cav-1 in lipid raft 6 1.4.4 Tyrosine 14 (Y14) of Cav-1 7 1.4.5 Cav-1 scaffolding domain (CSD) 7 1.4.6 Cav-1 regulates TGF-β signaling pathway leading to kidney disease and fibrosis …………………………………………………………………………..8 1.5 Motivation and specific aims 9 Chapter 2 Materials and Methods 11 2.1 Cell line and cell culture 11 2.2 Transient transfection 11 2.3 Immunofluorescence staining 11 2.4 Confocal microscopy 12 2.5 Western blotting 12 2.6 Analysis of nuclear translocation (N/N+C, N/C) 13 2.7 Statistical analysis 13 Chapter 3 Results 15 3.1 Cellular distribution of Cav-1 variants 15 3.2 Effect of Cav-1 knockdown on TGF-β and EGF signaling pathway 16 3.3 Depletion of lipid rafts by MβCD treatment for TGF-β and EGF signaling 17 3.4 Inhibition of Cav-1 by CSD-peptide treatment for TGF-β and EGF signaling 18 3.5 Effect of Cav-1 variants on TGF-β signaling 18 3.6 Effect of Cav-1 variants on EGF signaling 19 3.7 Effect of Cav-1 variants on crosstalk between TGF-β and EGF signaling 19 3.8 Protein activity and phosphorylation is regulated 20 by Cav-1 variants 20 Chapter 4 Discussion 23 References 28 Figures 37

    Akahira, J., Sugihashi, Y., Suzuki, T., Ito, K., Niikura, H., Moriya, T. & Yaegashi, N. (2004). Decreased expression of 14-3-3 sigma is associated with advanced disease in human epithelial ovarian cancer: its correlation with aberrant DNA methylation. Clinical Cancer Research, 10(8), 2687-2693.
    Anderson, N. & Borlak, J. (2008). Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacological Reviews, 60(3), 311-357.
    Ariotti, N., Fernández-Rojo, M. A., Zhou, Y., Hill, M. M., Rodkey, T. L., Inder, K. L. & Parton, R. G. (2014). Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 204(5), 777-792.
    Bastiani, M. & Parton, R. G. (2010). Caveolae at a glance. Journal of Cell Science, 123(22), 3831-3836.
    Buonato, J. M., Lan, I. S. & Lazzara, M. J. (2015). EGF augments TGFβ-induced epithelial-mesenchymal transition by promoting SHP2 binding to GAB1. Journal of Cell Science, 128(21), 3898-3909.
    Carraway, K. L. & Cantley, L. C. (1994). A new acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell, 78(1), 5-8.
    Chand, S., Edwards, N. C., Chue, C. D., Jesky, M., Stringer, S., Simmonds, M. J. & Borrows, R. (2016). Caveolin-1 single-nucleotide polymorphism and arterial stiffness in non-dialysis chronic kidney disease. Nephrology Dialysis Transplantation, 31(7), 1140-1144.
    Chand, S., Hazeldine, J., Smith S. W. & Borrows R. (2018). Genetic deletion of the lipid raft protein caveolin-1 leads to worsening renal fibrosis. Journal of Clinical Nephrology and Renal Care, 4(1), 37.
    Chen, J., Chen, J. K. & Harris, R. C. (2012). Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Molecular and Cellular Biology, 32(5), 981-991.
    Chen, J., Chen, J. K., Nagai, K., Plieth, D., Tan, M., Lee, T. C. & Harris, R. C. (2012). EGFR signaling promotes TGFβ-dependent renal fibrosis. Journal of American Society of Nephrology, 23(2), 215-224.
    Chung, C. L., Wang, S. W., Sun, W. C., Shu, C. W., Kao, Y. C., Shiao, M. S. & Chen, C. L. (2018). Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochemical Pharmacology, 154, 39-53.
    Concha-Benavente, F. & Ferris, R. L. (2017). Reversing EGFR mediated immunoescape by targeted monoclonal antibody therapy. Frontiers in Pharmacology, 8, 332.
    Costanza, B., Umelo, I. A., Bellier, J., Castronovo, V. & Turtoi, A. (2017). Stromal modulators of TGF-β in cancer. Journal of Clinical Medicine, 6(1), 7.
    Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. Journal of Biological Chemistry, 272(10), 6525-6533.
    De Almeida, C. J. G. (2017). Caveolin-1 and caveolin-2 can be antagonistic partners in inflammation and beyond. Frontiers in Immunology, 8, 1530.
    De Jong, K. P., Stellema, R., Karrenbeld, A., Koudstaal, J., Gouw, A. S., Sluiter, W. J. & De Vries, E. G. (1998). Clinical relevance of transforming growth factor alpha, epidermal growth factor receptor, p53, and Ki67 in colorectal liver metastases and corresponding primary tumors. Hepatology, 28(4), 971-979.
    Del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-García, A., Anderson, R. G. & Schwartz, M. A. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7(9), 901-908.
    Derynck, R., Akhurst, R. J. & Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117-129.
    Derynck, R. & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425(6958), 577-584.
    Fabregat, I. & Caballero-Díaz, D. (2018). Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Frontiers in Oncology, 8, 357.
    Fukuchi, M., Imamura, T., Chiba, T., Ebisawa, T., Kawabata, M., Tanaka, K. & Miyazono, K. (2001). Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Molecular Biology of the Cell, 12(5), 1431-1443.
    Gong, Y., Yang, Y., Tian, S. & Chen, H. (2019). Different role of caveolin-1 gene in the progression of gynecological tumors. Asian Pacific Journal of Cancer Prevention, 20(11), 3259-3268.
    Gu, Y. Y., Liu, X. S., Huang, X. R., Yu, X. Q. & Lan, H. Y. (2020). Diverse role of TGF-β in kidney disease. Frontiers in Cell and Developmental Biology, 8, 123.
    Hanahan, D. & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674.
    Harskamp, L. R., Gansevoort, R. T., Van Goor, H. & Meijer, E. (2016). The epidermal growth factor receptor pathway in chronic kidney diseases. Nature Reviews Nephrology, 12(8), 496-506.
    Heldin, C. H. & Moustakas, A. (2016). Signaling receptors for TGF-β family members. Cold Spring Harbor Perspectives in Biology, 8(8), a022053.
    Herbst, R. S. (2004). Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology, Biology, Physics, 59(2), 21-26.
    Hoffmann, C., Berking, A., Agerer, F., Buntru, A., Neske, F., Chhatwal, G. S. & Hauck, C. R. (2010). Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. Journal of Cell Science, 123(24), 4280-4291.
    Hua, H., Munk, S. & Whiteside, C. I. (2003). Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. American Journal of Physiology Renal Physiology, 284(2), 303-312.
    Huang, F., Shi, Q., Li, Y., Xu, L., Xu, C., Chen, F. & Chen, Y. G. (2018). HER2/EGFR-AKT signaling switches TGF-β from inhibiting cell proliferation to promoting cell migration in breast cancer. Cancer Research, 78(21), 6073-6085.
    Ikushima, H. & Miyazono, K. (2010). TGF-β signalling: a complex web in cancer progression. Nature Reviews Cancer, 10(6), 415-424.
    Joshi, B., Bastiani, M., Strugnell, S. S., Boscher, C., Parton, R. G. & Nabi, I. R. (2012). Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 199(3), 425-435.
    Kok, H. M., Falke, L. L., Goldschmeding, R. & Nguyen, T. Q. (2014). Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nature Reviews Nephrology, 10(12), 700-711.
    Lajoie, P. & Nabi, I. R. (2010). Lipid rafts, caveolae, and their endocytosis. International Review of Cellular and Molecular Biology, 282, 135-163.
    LeBleu, V. S., Taduri, G., O'Connell, J., Teng, Y., Cooke, V. G., Woda, C. & Kalluri, R. (2013). Origin and function of myofibroblasts in kidney fibrosis. Nature Medicine, 19(8), 1047-1053.
    Liu, S., Chen, S. & Zeng, J. (2018). TGF‑β signaling: a complex role in tumorigenesis. Molecular Medicine Reports, 17(1), 699-704.
    Liu, Y., Lv, J. Y., Shi, J. F., Yang, M., Liu, S. H., Li, Z. W. & Zhao, J. M. (2014). Targeting the raft-associated Akt signaling in hepatocellular carcinoma. BioMed Research International, 2014, 836025.
    Liu, Z., Yi, L., Du, M., Gong, G. & Zhu, Y. (2019). Overexpression of TGF-β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway. Experimental and Therapeutic Medicine, 17(6), 4457-4464.
    Malhi, H. & Gores, G. J. (2008). Cellular and molecular mechanisms of liver injury. Gastroenterology, 134(6), 1641-1654.
    Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. (2016). TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 12(6), 325-338.
    Meyer-Schaller, N., Heck, C., Tiede, S., Yilmaz, M. & Christofori, G. (2018). Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration. Breast Cancer Research, 20(1), 118.
    Moeini, A., Cornellà, H. & Villanueva, A. (2012). Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer, 1(2), 83-93.
    Morris, R., Cox, H., Mombelli, E. & Quinn, P. J. (2004). Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcellular Biochemistry, 37, 35-118.
    Moustakas, A., Souchelnytskyi, S. & Heldin, C. H. (2001). Smad regulation in TGF-beta signal transduction. Journal of Cell Science, 114(24), 4359-4369.
    Neuzillet, C., de Gramont, A., Tijeras-Raballand, A., de Mestier, L., Cros, J., Faivre, S. & Raymond, E. (2014). Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget, 5(1), 78-94.
    Nguyen, N., Fernando, S. D., Biette, K. A., Hammer, J. A., Capocelli, K. E., Kitzenberg, D. A. & Masterson, J. C. (2018). TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Mucosal Immunology, 11(2), 415-426.
    Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R. & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2-16.
    Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. (2005). A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology, 1, 2005.0010.
    Orlichenko, L., Huang, B., Krueger, E. & McNiven, M. A. (2006). Epithelial growth factor-induced phosphorylation of caveolin-1 at tyrosine 14 stimulates caveolae formation in epithelial cells. Journal of Biological Chemistry, 281(8), 4570-4579.
    Ostrom, R. S. & Insel, P. A. (2004). The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. British Journal of Pharmacology and Chemotherapy, 143(2), 235-245.
    Park, J. H. & Han, H. J. (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. American Journal of Physiology Cell Physiology, 297(4), 935-944.
    Parton, R. G. (1996). Caveolae and caveolins. Current Opinion in Cell Biology, 8(4), 542-548.
    Parton, R. G. & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 8(3), 185-194.
    Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. (2014). Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology, 14(3), 181-194.
    Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E. & Zerial, M. (2005). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature, 436(7047), 78-86.
    Peng, F., Wu, D., Ingram, A. J., Zhang, B., Gao, B. & Krepinsky, J. C. (2007). RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. Journal of American Society of Nephrology, 18(1), 189-198.
    Peng, F., Zhang, B., Wu, D., Ingram, A. J., Gao, B. & Krepinsky, J. C. (2008). TGF-beta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. American Journal of Physiology Renal Physiology, 295(1), 153-164.
    Penheiter, S. G., Mitchell, H., Garamszegi, N., Edens, M., Doré, J. J., Jr. & Leof, E. B. (2002). Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Molecular and Cellular Biology, 22(13), 4750-4759.
    Pol, A., Lu, A., Pons, M., Peiró, S. & Enrich, C. (2000). Epidermal growth factor-mediated caveolin recruitment to early endosomes and MAPK activation. Role of cholesterol and actin cytoskeleton. Journal of Biological Chemistry, 275(39), 30566-30572.
    Rüster, C. & Wolf, G. (2011). Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. Journal of American Society of Nephrology, 22(7), 1189-1199.
    Radinsky, R., Risin, S., Fan, D., Dong, Z., Bielenberg, D., Bucana, C. D. & Fidler, I. J. (1995). Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clinical Cancer Research, 1(1), 19-31.
    Rajaram, P., Chandra, P., Ticku, S., Pallavi, B. K., Rudresh, K. B. & Mansabdar, P. (2017). Epidermal growth factor receptor: role in human cancer. Indian Journal of Dental Research, 28(6), 687-694.
    Rajput, A., Koterba, A. P., Kreisberg, J. I., Foster, J. M., Willson, J. K. & Brattain, M. G. (2007). A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Research, 67(2), 665-673.
    Resnick, M. B., Routhier, J., Konkin, T., Sabo, E. & Pricolo, V. E. (2004). Epidermal growth factor receptor, c-MET, beta-catenin, and p53 expression as prognostic indicators in stage II colon cancer: a tissue microarray study. Clinical Cancer Research, 10(9), 3069-3075.
    Riesco, A., Santos-Buitrago, B., De Las Rivas, J., Knapp, M., Santos-García, G. & Talcott, C. (2017). Epidermal growth factor signaling towards proliferation: modeling and logic inference using forward and backward search. BioMed Research International, 2017, 180.
    Samarakoon, R., Dobberfuhl, A. D., Cooley, C., Overstreet, J. M., Patel, S., Goldschmeding, R., Meldrum, K. K. & Higgins, P. J. (2013). Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal, 25(11), 2198-2209.
    Samarakoon, R., Higgins, S. P., Higgins, C. E. & Higgins, P. J. (2019). The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: role of caveolin-1. Biomolecules, 9(8), 341.
    Sasaki, T., Hiroki, K. & Yamashita, Y. (2013). The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Research International, 2013, 546318.
    Schlegel, A., Schwab, R. B., Scherer, P. E. & Lisanti, M. P. (1999). A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. Journal of Biological Chemistry, 274(32), 22660-22667.
    Shang, D., Peng, T., Gou, S., Li, Y., Wu, H., Wang, C. & Yang, Z. (2016). High Mobility group box protein 1 boosts endothelial albumin transcytosis through the RAGE/Src/caveolin-1 pathway. Scientific Reports, 6(1), 32180.
    Shankar, J., Boscher, C. & Nabi, I. R. (2015). Caveolin-1, galectin-3 and lipid raft domains in cancer cell signalling. Essays in Biochemistry, 57, 189-201.
    Shi, Y. B., Li, J., Lai, X. N., Jiang, R., Zhao, R. C. & Xiong, L. X. (2020). Multifaceted roles of caveolin-1 in lung cancer: a new investigation focused on tumor occurrence, development and therapy. Cancers (Basel), 12(2), 291.
    Sun, J., Kohr, M. J. & Nguyen, T. (2012). Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxidants Redox Signaling, 16(1), 45-56.
    Torok, N. J. (2016). Dysregulation of redox pathways in liver fibrosis. American Journal of Physiology Gastrointestinal and Liver Physiology, 311(4), 667-674.
    Tourkina, E., Richard, M. & Gööz, P. (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. American Journal of Physiology-Lung Cellular and Molecular Physiology, 294(5), 843-861.
    Van der Geer, P., Hunter, T. & Lindberg, R. A. (1994). Receptor protein-tyrosine kinases and their signal transduction pathways. Annual Review of Cell and Developmental Biology, 10, 251-337.
    Van Krieken, R. & Krepinsky, J. C. (2017). Caveolin-1 in the pathogenesis of diabetic nephropathy: potential therapeutic target? Current Diabetes Reports, 17(3), 19.
    Wang, L., Clutter, S., Benincosa, J., Fortney, J. & Gibson, L. F. (2005). Activation of transforming growth factor-beta1/p38/Smad3 signaling in stromal cells requires reactive oxygen species-mediated MMP-2 activity during bone marrow damage. Stem Cells, 23(8), 1122-1134.
    Wang, S. E. (2011). The functional crosstalk between HER2 tyrosine kinase and TGF-β signaling in breast cancer malignancy. Journal of Signal Transduction, 2011, 804236.
    Wang, S. E., Shin, I., Wu, F. Y., Friedman, D. B. & Arteaga, C. L. (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta. Cancer Research, 66(19), 9591-9600.
    Wang, W., Koka, V. & Lan, H. Y. (2005). Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton), 10(1), 48-56.
    Whatcott, C. J., Diep, C. H., Jiang, P., Watanabe, A., LoBello, J., Sima, C. & Han, H. (2015). Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clinical Cancer Research, 21(15), 3561-3568.̅
    Witta, S. E., Gemmill, R. M., Hirsch, F. R., Coldren, C. D., Hedman, K., Ravdel, L. & Bunn, P. A., Jr. (2006). Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Research, 66(2), 944-950.
    Xu, J., Acharya, S., Sahin, O., Zhang, Q., Saito, Y., Yao, J. & Yu, D. (2015). 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell, 27(2), 177-192.
    Yan, X., Liao, H., Cheng, M., Shi, X., Lin, X., Feng, X. H. & Chen, Y. G. (2016). Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/Smad signaling. Journal of Biological Chemistry, 291(1), 382-392.
    Yi, S. L., Liu, X. J., Zhong, J. Q. & Zhang, Y. (2014). Role of caveolin-1 in atrial fibrillation as an anti-fibrotic signaling molecule in human atrial fibroblasts. PLoS One, 9(1), 85144.
    Zhang, Y. E. & Newfeld, S. J. (2013). Meeting report-TGF-β superfamily: signaling in development and disease. Journal of Cell Science, 126(21), 4809-4813.
    Zhong, X., Chung, A. C., Chen, H. Y., Dong, Y., Meng, X. M., Li, R. & Lan, H. Y. (2013). miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia, 56(3), 663-674

    下載圖示 校內:2025-08-20公開
    校外:2025-08-20公開
    QR CODE