簡易檢索 / 詳目顯示

研究生: 周嘉宏
Jhou, Jia-Hong
論文名稱: 暴雨與海嘯複合型災害對蘭陽平原之淹水潛勢影響評估
Numerical Analysis for the Impact of Compound Disasters (Rainstorm and Tsunami) on the inundation potential of the Langyang Plain
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 海嘯波淹水潛勢地文性淹水模式
外文關鍵詞: Tsunami, Physiographic Inundation Model, Lanyang Plain
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於地震的活躍區,若台灣附近海溝引發地震規模9.0以上的海底地震,所產生的海嘯會直接對附近沿岸陸地造成衝擊,而海底地震所引發的海嘯波傳遞至沿海地區的陸地時,所造成的淹水程度影響會因陸地的地形、地貌、地物而不同。
    本研究應用COMCOT (COrnell Multigrid COupled Tsunami model)模擬琉球海溝發生規模9.5的強震時所產生海嘯波傳遞情形,並在模擬過程中於外海地區設置多潮位觀測點以觀測海嘯波傳遞時自由液面的變化情形。再以觀測點模擬所得的自由液面變化情形和當地天文潮資料疊加後,作為地文性淹排水模式(Physiographic Inundation Model)的下游邊界。以蘭陽平原為研究區域,分別以海嘯波、海嘯波與2008年辛樂克颱風暴雨資料兩者案例進行研究區域內淹水潛勢之模擬與比較。
    模擬結果得知,琉球海溝錯動19分鐘後,海嘯前導波抵達研究區域;錯動55分鐘之後研究區域受到首波海嘯波襲擊,而首波海嘯波即為最大海嘯波,其波高為13.52公尺。淹水潛勢部分,海嘯波案例最大淹水深度為5公尺,溢淹最長距離為10.6公里,海嘯波與暴雨案例最大淹水深度為12公尺,溢淹最長距離為11.2公里。而海嘯波、海嘯波與暴雨兩案例作比較,淹水面積增加了7610公頃,由於海嘯波上溯河道阻礙河道排水,導致淹水深度增加、淹水面積變大。

    Taiwan is located at seismic zones. If the undersea trench near Taiwan triggers an earthquake over 9.0 on the Richter scale, the tsunami generated will impact directly on the coastal areas. The tsunami wave yields different impacts on flooding potential occurring at the coastal areas due to land topography and surface features.

    We apply the COMCOT (COrnell Multigrid COupled Tsunami model) model to simulate the tsunami transport of a scale 9.5 earthquake from the Ryukyu Trench dislocation. We also set up multiple tide observation stations in offshore areas during the simulation to observe changes in free surface when tsunami waves passed. The simulation results of the COMCOT model are then incorporated into the Physiographic Inundation Model as the downstream boundaries. We simulate the flooding potential of the Lanyang Plain with two scenarios: tsunami only, and tsunami and Typhoon Simlaku, 2008.

    The results show that tsunami generated from the Ryukyu Trench arrives the study area in 19 minutes; the first tsunami wave (the highest wave) with a height of 13.52 meters strikes the study area in 55 minutes. The results of flooding potential for the first scenario (tsunami only) show that the maximum flooded depth is 5 meters and the farthest flooded distance is 10.6 km. In the second scenario (tsunami and Typhoon Simlaku), the maximum flooded depth is 12 meters and the farthest flooded distance is 11.2 km. Comparing with these two scenarios, an increase of 7610 hectares in flooding areas can be observed since tsunami waves hinders the drainage of river channels.

    摘要----------------------------------------------------I 致謝--------------------------------------------------XII 目錄-------------------------------------------------XIII 圖目錄-------------------------------------------------XV 表目錄-----------------------------------------------XVII 符號說明--------------------------------------------XVIII 第一章 緒論---------------------------------------------1 1-1 前言-----------------------------------------------1 1-2 文獻回顧--------------------------------------------2 1-2-1海嘯歷史紀錄---------------------------------------2 1-2-2 海嘯模擬的數值模式---------------------------------6 1-2-3 淹水模擬的數值模式---------------------------------7 1-2-4 海嘯與淹水模擬的相關研究----------------------------8 1-3 研究動機與目的--------------------------------------10 1-4 研究方法-------------------------------------------10 1-5 本文組織-------------------------------------------12 第二章 模式理論-----------------------------------------13 2-1 COMCOT模式-----------------------------------------13 2-2 地文性淹排水模式------------------------------------21 第三章 模式網格與參數建置--------------------------------25 3-1 海嘯模擬-------------------------------------------25 3-1-1 地形資料-----------------------------------------25 3-1-2 破裂面參數---------------------------------------27 3-2 地文性淹排水模擬------------------------------------31 3-2-1 研究區域概況-------------------------------------31 3-2-2 潮汐分析-----------------------------------------37 3-2-3 計算網格建立--------------------------------------39 3-3 模式驗證--------------------------------------------46 3-4 潮位觀測點------------------------------------------54 第四章 結果與討論----------------------------------------62 4-1 海嘯模擬結果----------------------------------------62 4-2 海嘯波對淹水潛勢之影響-------------------------------64 4-3 暴雨與海嘯波對淹水潛勢之影響--------------------------67 第五章 結論與建議---------------------------------------72 5-1 結論-----------------------------------------------72 5-2 建議-----------------------------------------------73 參考文獻-----------------------------------------------74

    1.交通部中央氣象局(2008),「地震百問」,45-53頁。
    2.交通部中央氣象局(2013),每月潮位資料。
    3.吳馥光(2003),「沿海低地之豪雨暴潮淹水現象之研究」,國立成功大學水利及海洋工程研究所碩士論文。
    4.呂育勳、蔡長泰、顏沛華、吳慶現(1995),「淹水數學模式之實驗研究」,第四十三卷,第二期,第37-44頁。
    5.巫孟璇(2013),「地文性淹水即時預報模式之發展與應用」,國立成功大學水利及海洋工程研究所博士論文。
    6.徐明同(1981),「海嘯所引起之災害」,中央氣象局學報,27 (1),1-15頁。
    7.徐泓(1983),「清代台灣天然災害史料彙編」,國科會。
    8.張孟挺(2008),「台灣的海嘯威脅與高雄市溢淹之模擬」,國立中山大學海下科技暨應用海洋物理研究所碩士論文。
    9.張國棟、徐月娟、許明光(2000),「台灣海嘯災害」,第二屆國際海洋大氣會議論文彙編-海洋,360-365頁。
    10.許明光、李起彤(1996),「台灣及其鄰近地區之海嘯」,台灣海洋學刊,第三十五期,第一號,1-15頁。
    11.陳金諾(2006),「河水對河道沖淤及棲地影響之研究」,國立成功大學水利及海洋工程研究所博士論文。
    12.陳韻如(2008),「2006年屏東外海地震引發海嘯的數值模擬探討」,國立中央大學水文科學研究所碩士論文。
    13.游明聖(1994),「明清時代的破壞性地震海嘯紀錄」,氣象學報第四十卷第一期,1-9頁。
    14.黃惠絹(2008),「馬尼拉海溝地震引發海嘯的潛勢分析」,國立中央大學水文科學研究所碩士論文。
    15.楊昌儒(2000),「地文性淹水預報系統建構之研究」,博士論文,國立成功大學水利及海洋工程研究所。
    16.楊昌儒、蔡智恆、蔡長泰(1998),「應用地理資訊系統評估水災害損失」,中國土木水利工程學刊,第十卷,第一期,第93-100頁。
    17.蔡長泰、游保杉、周乃昉、史天元、楊昌儒、蔡智恆(1997),「地理資訊系統在淹水預警上之應用 (四)」,國立成功大學水利及海洋工程研究所研究報告,CKHOPJ-97-001。
    18.蔡長泰、蔡智恆(1997),「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第 29-45頁。
    19.Benavente, J., Del Rio, L., Gracia, F.J. and Martinez-del-Pozo, J.A., (2006), “Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain),” Continental Shelf Research, Vol. 26, pp. 1061 1076.
    20.Chen C. N., Tsai C. H., Tsai C. T., (2006),“Simulation of Sediment Yield from Watershed by Physiographic Soil Erosion-Deposition Model”, Journal of Hydrology, 327, pp.293-303.
    21.Cheung, K.F., Phadke, A.C., Wei, Y., Rojas, R., Douyere, Y.J.M., Martino, C.D., Houston, S.H., Liu, P.L.F., Lynett, P.J., Dodd, N., Liao, S. and Nakazaki, E., (2003), “Modeling of storm-induced coastal flooding for emergency management,” Ocean Engineering, Vol. 30, pp. 1353-1386.
    22.Chow, V. T., Maidment D. R., Mays, L. W. (1988), “Applied Hydrology, McGraw-Hill”, United States, pp. 153-155.
    23.Cunge, J.A., (1975), “Two-dimension modeling of flood plains,”In: Mahmood, K., and Yevjevich, V. Eds., Unsteady Flowin Open Channel, Water Resources Publication, FortCollins, USA.
    24.Gambolati, G., Teatini, P. and Gonella, M.,(2002),“GIS simulations of the inundation risk in the coastal lowlands of the northern Adriatic Sea,”Mathematical and Computer Modelling, Vol. 35, pp. 963-972.
    25.Gica, E., M. C. Spillane, V. V. Titov, C. D. Chamberlin and J. C. Newman, (2006), “Development of The Forecast Propagation Database For NOAA’s Short-Team Inundation Forecast for Tsunamis (SIFT), Joint Institute for the Study of the Atmosphere and Ocean (JISAO)”, NOAA/Pacific Marine Environmental Laboratory.
    26.Ichinose, G., P. Somerville, H. K. Thio, R. Graves and D. O'Connell, (2007), “Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data”, Journal of Geophysical Research, 112, B07306.
    27.Imamura, F., (2006), Tsunami modeling manual, School of Civil Eng., DCRC, Tohoku Univ.
    28.Inoue K., Iwasa, Y. and Matsuo, N., (1987), “Numerical analysis of two-dimensional free surface flow by means of finite difference method and its application to practical problems”, Proceedings of ROC-Japan Joint Seminar on Water Resource Engineering, Taipei, pp. 171-190.
    29.Iwasa, Y. and Inoue, K., (1982),“Mathematical simulation of channel and overland flood flows in view of flood disaster engineering,” Journal of Natural Disaster Science, Vol. 4, No. 1, pp. 130.
    30.Jiang, C. S. and Z. L. Wu, (2005), “The December 26,2004, off the west coast of northern Sumatra, Indonesia, Mw=9.0, earthquake and the critical-point- like model of earthquake preparation”, ACTA Seismologica Sinica, 18, 290-296.
    31.Johnson, J. M., K. Satake, S. R. Holdahl and J. Sauber, (1996), “The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data”, Journal of Geophysical Ressearch, 101, 523-532.
    32.Li, M.H., Hsu, M.H., Hsieh, L.S. and Teng, W.H., (2002),“Inundation potentials analysis for Tsao-Ling landslide lakeformed by Chi-Chi earthquake in Taiwan,” Natural Hazards, Vol. 25, pp. 289-303.
    33.Lima, V. V., J. M. Miranda, M. A. Baptista, J.Catalao, M. Gonzalez and P. M. M. Soares, (2008). Spatial distribution of tsunami height and the extent inundation along the southeastern Iberian coast for the 1755 event, Geophys. Res., 10, EGU2008-A-00822.
    34.Liu, L. F., S. B. Woo and Y. S. Cho, (1998), “Computer programs for tsunami propagation and inundation”, Cornell University.
    35.Liu, P. L. F., Y. S. Cho, S. B. Yoon and S. N. Seo, (1994), “Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii, in Recent development in tsunami research”, edited by M. I. El-Sabh, Kluwer Academic, Dordrecht, The Netherlands, 99-115.
    36.Mansinha, L. and D. E. Smylie, (1971), “The displacement fields of inclined faults”, Bulletin of the Seismological Society America, 61, 1433-1440.
    37.O'Brien, J.S., Julien, P.Y. and Fullerton, W.T., (1993),“Twodimensional water flood and mudflood simulation,”Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 2, pp. 244-261.
    38.Okada, Y. (1985), “Surface deformation due to shear and tensile faults in a halfspace”, Bulletin of the Seismological Society America, 75, 1135-1154.
    39. Papazachos, C. B., E. M. Scordilis, D. G. Panagiotopoulos and G. F. Karakaisis, (2004), “Global relations between seismic fault parameters and moment magnitude of earthquakes”, Bulletin Of the Geological Society of Greece, 25, 1482–1489.
    40.Peng, M., Xie, L. and Pietrafesa, L.J., (2004),“A numerical study of storm surge and inundation in the Croatan-Albemarle- Pamlico estuary system,”Estuarine, Coastal and Shelf Science, Vol. 59, pp. 121-137.
    41.Takahashi, T., Nakagawa, H. and Noshizaki, T., (1986), “Two dimension numerical simulation method to estimate the risk of a flood hazard caused by a river bank breach,” Disaster Prevention Research Institute Report 29B-2, Kyoto University.
    42.Titov V. V. and F. I. Gonzalez, (1997), Implementation and testing of the method of splitting tsunami (MOST) model, NOAA/Pacific Marine Environmental Laboratory.
    43.Tsai C.T., Chen, C.N. and Tsai C.H., (2007), “Influence of reservoir flood releasing on inundated potential for downstream area,” The 2nd International Conference on Urban Disaster Reduction, ICUDR, Taipei.
    44.USDA-SCS (U.S. Department of Agriculture-Soil Conservation Service) (1986), “Urban Hydrology for Small Watersheds.”, Technical Release No. 55, U.S. Government Printing Office, Washington, D.C.
    45.Wang, X. and L. F. Liu., (2006), Preliminary Study of Possible Tsunami Hazards in Taiwan Region, Cornell University.
    46.Wang, X. and P.L.-F. Liu., (2005), Preliminary simulation of 1986 & 2002 Taiwan Hualien Tsunami, Cornell University.
    47.Wong, J.H., Chen, C.N., Lai, C.Y., Tsai, C.H. and Tsai, C.T., (2004),“Application of GIS linked physiographic inundation model to estimate the influence of land use on flooding potential,” Proceedings of the 6th Interaction Conference on Hydroinformatics, Singapore, pp 769-776.
    48.Y.-S. Cho. (1995), Numerical simulations of tsunami and runup. PhD thesis, Cornell University.
    49.Yu, S.B.; Chen, H.Y., Kuo, L.C., (1997), “Velocity field of GPS stations in the Taiwan area”, Tectonophysics. (274): 41–59.

    下載圖示 校內:2016-01-09公開
    校外:2016-01-09公開
    QR CODE