簡易檢索 / 詳目顯示

研究生: 陳永嘉
Chen, Yeong-Jia
論文名稱: 砷化銦鋁/砷化銦鎵變晶結構高電子移動率電晶體之研製及放大器電路應用
Investigation and Circuit Application of InAlAs/InGaAs Metamorphic High Electron Mobility Transistors
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 172
中文關鍵詞: 砷化銦鋁/砷化銦鎵變晶高電子移動率電晶體
外文關鍵詞: InAlAs/InGaAs, HEMT, metamorphic
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們成功的研製一系列砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。藉由不同銦組成的通道,完整的探討其對元件特性的影響,例如:源極電流、崩潰電壓、轉導值、輸出電導、閘極電壓擺幅、高頻特性、功率特性以及雜訊特性,並藉此優異特性應用於放大器電路上。
      我們首先研製通道銦組成為0.35之δ-摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。相較於銦組成為0.53的砷化銦鎵通道,銦組成為0.35的砷化銦鎵通道具有較大的能隙,因此可以降低通道中衝擊游離的現象,改善紐結效應,同時可獲得較低的輸出電導(0.69 mS/mm)、較佳的電壓增益(442)。又由於使用寬能隙的砷化銦鋁(銦組成為0.35)為蕭基層,所以元件具有較高的崩潰電壓,使其更適合於高功率的應用。在閘極長度為0.65 µm的元件中,其閘-源極兩端的崩潰電壓為-15.2 V,三端截止崩潰電壓為14.1 V;在操作頻率為2.4 GHz時,可獲得小訊號功率增益為22.7 dB,飽和輸出功率為14.1 dBm (128.5 mW/mm),最大功率附加效率為46.4 %。
      為了使元件更能適用於高頻率的應用上,我們進一步研製銦組成為0.45/0.65之複合式通道的δ-摻雜砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。由於銦組成為0.65的砷化銦鎵通道具有較窄的能隙,所以載子有較佳的傳輸特性,進而改善元件的轉導值及高頻特性。就閘極長度為0.65 µm的元件而言,其轉導值為321 mS/mm,單一電流增益截止頻率和最大震盪頻率分別為43.1 GH以及50 GHz。
      但由於較窄的能隙會有較明顯的衝擊游離的現象,並使得紐結效應更為嚴重,因而造成較高的輸出電導以及降低了元件的崩潰電壓。為了研究及改善元件的紐結效應,我們研製通道銦組成為0.53之δ-摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體,並分別鍍上金、鎳/金、鈦/金、鉑/金等不同的閘極金屬,探討其對特性的影響。不同的閘極金屬可以獲得不同的蕭基能障,而當蕭基能障變大時,會使得空乏區増大,因此減少了通道的有效寬度,進而抑制通道中載子的數量,使得衝擊游離的效應減低,同時紐結效應亦隨之改善。
      除了藉由不同閘極金屬之外,我們也藉由不同的通道設計來改善紐結效應。我們研製兩種不同銦組成通道之δ-摻雜的砷化銦鋁/砷化銦鎵變晶結構高電子移動場效電晶體。分別為銦組成為0.65的均勻式通道以及銦組成為漸變式對稱型通道(0.5→0.65→0.5)。由於對稱型通道有較大的平均能隙,因以可以改善衝擊游離效應和紐結效應,同時亦可增加閘極電壓的擺幅及崩潰電壓,使得元件較適合於高功率的應用。然而,另一方面,由於均勻式通道有較佳的載子傳輸特性,所以可以獲得較佳的源極電流、轉導值,使得元件較適合於高頻率及低雜訊的應用。又因為均勻式通道有較大的導帶不連續,可以增加載子的侷限能力,因此我們對其做温度變化的測試。由實驗結果顯示,均勻式通道有良好的熱穏定性。當温度從300 K變化至500 K時,源極電流下降21.9 %、轉導值下降17.7 %、閘-源極崩潰電壓下降31.6 %,而臨界電壓則僅變動4.7 %。
      最後,我們針對均勻式通道及對稱式通道之變晶結構高電子移動場效電晶體來模擬及設計C-band (4 ~ 6 GHz)增益放大器。由於均勻式通道有較佳載子傳輸特性,因此可以獲得較高的增益放大器。但是,另一方面,由於對稱式通道有較佳的閘極電壓擺幅,所以可以獲得較寬廣的閘極電壓操作範圍。

     In this dissertation, we have successfully fabricated and investigated InAlAs/InGaAs metamorphic high-electron-mobility transistors (MHEMT’s) by employing different InxGa1-xAs channel structures with varied In compositions. Through the channel engineering, we have completely studied the influences on comprehensive device performances, such as drain current, breakdown, extrinsic transconductances, output conductance, high-frequency characteristics, power performances, and noise behaviors. Meanwhile, we also design and simulate gain amplifier by using superior characteristics of studied MHEMT.
     First, we’ve investigated the δ-doped In0.35Al0.65As/In0.35Ga0.65As MHEMT’s. Since the energy band-gap of In0.35Ga0.65As channel is larger than that of In0.53Ga0.47As channel, the impact ionization of the channel is expected to be reduced, thus improving the kink effects. Consequently, lower output conductance (0.69 mS/mm) and higher voltage gain (442) have been obtained. In addition, due to the use of wide-gap In0.35Al0.65As Schottky layer, the breakdown voltage characteristics of studied device have also been improved. For a 0.65 μm device, the gate-drain breakdown voltage and three-terminal off-state breakdown voltage are -15.2 V and 14.1 V, respectively. The measured saturated output power, small-signal power gain, and maximum power-added-efficiency, at 2.4 GHz, are 14.1 dBm (128.5 mW/mm), 22.7 dB, and 46.4 %, respectively. The studied device is promisingly suitable for high-power application
     To facilitate its high-frequency applications, we have further investigated a δ-doped In0.45Al0.55As/InGaAs MHEMT by using the In0.45Ga0.55As/In0.65Ga0.35As composite channel. Due to the narrow-gap property of the In0.65Al0.35As channel layer, better carrier transport characteristics have been obtained to improve the transconductance and high-frequency characteristics of the studied device. For a 0.65 μm device, the measured extrinsic transconductance, unity current gain cut-off frequency, and maximum oscillation frequency are 321 mS/mm, 43.1 GHz and 50 GHz, respectively.
     Nevertheless, impact ionization effects usually accompany with narrow-gap compounds, thus deteriorating the kink effects. Higher output conductances and lower breakdown voltages were observed by using In0.45Ga0.55As/In0.65Ga0.35As composite channel. To improve the above-mentioned kink effects, we have investigated the δ-doped In0.55Al0.55As/In0.53Ga0.47As MHEMT’s due to improved kink effects by evaporating alloys, including Au, Ni/Au, Ti/Au, and Pt/Au, as the Schottky contacts to discuss their respective influences on device performance. Since different gate alloys can induce different Schottky barrier heights, and higher Schottky barrier height can extend more of the depletion region, the efficient channel can then be decreased and the carriers within channel are suppressed. Then, impact ionization and the related kink effects within the channel can be reduced and improved.
     Besides using different gate alloys, we’ve further designed different channel layers to improve the kink effects. We investigated In0.425Al0.575As/InxGa1-xAs MHEMT’s with two different channel designs: one with a uniform In0.65Ga0.35As channel, and the other with a V-shaped symmetrically-graded InxGa1-xAs channel (x = 0.5 → 0.65 → 0.5). Due to larger band-gap value, in average, for the symmetrical channel, the impact ionization and kink effects can be improved. Simultaneously, the gate-voltage swing and the breakdown performance can also be enhanced. The studied device with symmetrical channel is more suitable for high-power applications. On the other hand, since higher values of drain current and extrinsic transconductance have been achieved, due to the improved carrier transport characteristics in the uniform In0.65Ga0.35As channel, the device is more suitable for high-frequency and low-noise applications. We have also investigated the temperature-dependent characteristics. The results show that the studied device provided good thermal stability, due to larger conduction-band discontinuities (ΔEC) between In0.425Al0.575As barrier and In0.65Ga0.35As channel and the improved carrier confinement. At 500 K, we’ve observed only 21.9 % decrease for the drain current densities at 300 K, 17.7 % decrease for the extrinsic transconductance, 31.6 % decrease for the gate-drain breakdown voltage, and only 4.7 % variation for the threshold voltage.
     Finally, we have simulated and have designed a gain amplifier for C-band (4 ~ 6 GHz) by using the uniform and the symmetrical channels, respectively. Due to better carrier transport characteristics, the device with uniform channel has demonstrated better gain. Besides, due to better gate-voltage swing for the device with symmetrical channel, wide range of gate-voltage operation has been achieved.

    Content Abstract Table Captions Figure Captions Chapter 1    Introduction 1 Chapter 2    δ-Doped In0.35Al0.65As/In0.35Ga0.65As Metamorphic HEMT    5 2-1 Introduction 5 2-2 Device Structure and Fabrication 6 2-3 Experimental Results and Discussions 7 2-3-1 DC Characteristics 7 2-3-2 Microwave Characteristics 10 2-3-3 Power Characteristics 10 2-3-4 Noise Characteristics 12 2-4 Summary 12 Chapter 3 In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As Inverse Composite Channel Metamorphic HEMT 14 3-1 Introduction 14 3-2 Device Structure and Fabrication 15 3-3 Experimental Results and Discussions 17 3-3-1 DC Characteristics 17 3-3-2 Temperature-Dependent Characteristics 18 3-3-3 Microwave Characteristics 20 3-3-4 Power Characteristics 20 3-3-5 Noise Characteristics 21 3-4 Summary 21 Chapter 4 δ-Doped In0.45Al0.55As/In0.53Ga0.47As Metamorphic HEMT with InAlGaAs Buffer 23 4-1 Introduction 23 4-2 Device Structure and Fabrication 23 4-3 Experimental Results and Discussions 24 4-3-1 DC Characteristics 24 4-3-2 Microwave Characteristics 28 4-3-3 Power Characteristics 29 4-3-4 Noise Characteristics 30 4-3-5 Device Characteristics of Sub-Micron Gate Length 31 4-4 Summary 32 Chapter 5 In0.425Al0.575As/InxGa1-xAs Metamorphic HEMTs with Pseudomorphic and Symmetrically-Graded Channels 34 5-1 Introduction 34 5-2 Device Structure and Fabrication 35 5-3 Experimental Results and Discussions 37 5-3-1 DC Characteristics 37 5-3-2 Temperature-Dependent Characteristics 43 5-3-3 Microwave Characteristics 47 5-3-4 Power Characteristics 48 5-3-5 Noise Characteristics 48 5-4 Summary 49 Chapter 6 Design of C-Band Gain Amplifier with PC-MHEMT and SGC-MHEMT 51 6-1 Introduction 51 6-2 Small-Signal Model 52 6-3 Circuit Design and Simulated Results 53 6-3-1 Specifications 54 6-3-2 Circuit Design 54 6-3-3 Simulated Results 54 6-3-4 Comparison with Commercial Specification 56 6-4 Summary 58 Chapter 7 Conclusion and Prospect 59 7-1 Conclusions 59 7-2 Prospect 62 References 63 Figures Publication List

    [1] J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multi-layers. I. misfit dislocations,” J. Cryst. Growth, vol. 27, p. 118, 1974.
    [2] J. H. Kim, H. S. Yoon, J. H. Lee, W. J. Chang, J. Y. Shim, K. H. Lee, and J. I. Song, Low-frequency noise characteristics of metamorphic In0.52Al0.48As/In0.6Ga0.4As double-heterostructure pseudomorphic high electron mobility transistors grown on a GaAs substrate,” Solid-State Electronic., vol. 46,p.69, 2002.
    [3] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron. Devices, vol. 48, p. 472, 2001.
    [4] L. D. Nguyen, A.S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility  transistors,” IEEE Trans. Electron. Devices, vol. 39, p. 2007, 1992.
    [5] H. S. Yoon, J. H. Lee, J. Y. Shim, S.J. Kim, D. M. Kang, J. Y. Hong, W. J. Chang, and K. H. Lee, “Low noise characteristics of double-doped In0.52Al0.48As/ In0.53Ga0.47As power metamorphic HEMT on GaAs substrate with wide head T-Shaped gate,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 201, 2002.
    [6] P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.
    [7] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guide. Wave Lett., vol. 8, p. 399, 1998.
    [8] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni,”30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans.  Electron. Devices, vol. 49, p. 1694, 2002.
    [9] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 µm gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,” IEEE Electron Device Lett., vol. 18, p. 284, 1997.
    [10] J. B. Shealy, M. Matloubian, T. Y. Liu, W. Lam, and C. Ngo, “0.9W/mm, 76% P.A.E. (7GHz) GaInAs/InP Composite Channel HEMTs,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 201, 1997.
    [11] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh,“Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, p. 1129, 1992.
    [12] K. L. Kavanagh, J. C. P. Chang, J. Chen, J. M. Fernandez, and H. H. Wieder, “Lattice tilt and dislocations in compositionally step-graded buffer layers for mismatched InGaAs/GaAs heterointerfaces,” J. Vac. Sci. Technol. B, vol. 10, p. 1820, 1992.
    [13] A. Bosacchi, A. C. De Riccardis, P. Frigeri, S. Franchi, C. Ferrari, S. Gennari, L. Lazzarini, L. Nasi, G. Salviati, A. V. Drigo, and F. Romanato,  "Continuously graded buffers for InGaAs/GaAs structures grown on GaAs,” J. Cryst. Growth, vol. 175/176, p. 1009, 1997.
    [14] P. Win, Y. Druelle, P. Legry, S. Lepilliet, A. Cappy, Y. Cordier, and J. Favre, “Microwave performance 0.4 µm gate metamorphic In0.29Al0.71As/ In0.3Ga0.7As HEMT on GaAs Substrate,” Electron. Lett., vol. 29, p. 169, 1993.
    [15] P. Win, Y. Druelle, Y. Cordier, D. Adam, J. Favre, and A. Cappy,"High-performance In0.3Ga0.7As/In0.29Al0.71As/GaAs metamorphic high-electron-mobility transistors,” Jpn. J. Appl. Phys., vol.33, p. 3343, 1994.
    [16] J. I. Chyi, J. L. Shieh, J. W. Pan, and R. M. Lin, “Material properties of compositional graded InxGa1-xAs and InxAl1-xAs epilayers grown on GaAs  substrates,” J. Appl. Phys., vol. 79, p. 8367, 1996.
    [17] Y. Cordier, and D. Ferre, “InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps,” J. Cryst. Growth, vol. 201/202, p. 263, 1999.
    [18] S. I. Gozu, K. Tsuboki, M. Hayashi, C. Hong, and S. Yamada, “Very high electron mobilities at low temperatures in InxGa1-xAs/InyAl1-yAs HEMTs grown lattice-mismatched on a GaAs substrates,” J. Cryst. Growth, vol. 201/202, p. 749, 1999.
    [19] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low-noise HEMT,”IEEE Microwave Guide. Wave Lett., vol. 7, p. 6, 1997.
    [20] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channel design,” IEEE Electron Device Lett., vol. 17, p.273, 1996.
    [21] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy,“Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMT’s on GaAs substrate,”IEEE Electron Device Lett., vol. 20, p. 123, 1999.
    [22] Y. Cordier, S. Bollaert, M. Zaknoune, J. diPersio, and D. Ferre,"AlInAs/GaInAs metamorphic HEMT's on GaAs substrate: from material to device,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p.211, 1998.
    [23] S. Bollaert, Y. Corider, M. Zaknoune, T. Parenty, H. Happy, S. Lepilliet, and A. Cappy, “fmax of 490 GHz metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMTs on GaAs substrate,” Electron. Lett., vol. 38, p. 389, 2002.
    [24] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Corider, Y. Druelle, D. Théron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage,” IEEE Electron Device Lett., vol. 19, p. 345, 1999.
    [25] A. S. Wakita, H. Rohdin, V. M. Robbins, N. Moll, C. Y. Su, A. Nagy, and D.P. Basile,"Low-noise bias reliability of AlInAs/GaInAs MODFETs with linearly graded low-temperature buffer layers grown on GaAs substrates,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 223, 1998.
    [26] Y. Cordier, M. Zaknoune, S. Bollaert, and A. Cappy, “Charge control and electron transport properties in InyAl1-yAs/InxGa2-xAs metamorphic HEMTs: effect of indium content,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 102, 2000.
    [27] D. C. Dumka, H. Q. Tserng, M. Y. Kao, E. A. Beam, and P. Saunier,"High-performance double-recess enhancement-mode metamorphic HEMTs on 4-in GaAs substrates,” IEEE Electron Device Lett., vol. 24, p. 135, 2003.
    [28] D. M. Gill, B. C. Kane, Stefan P. Svensson, D. W. Tu, P. N. Uppal, and N. E. Byer, “High-performance, 0.1 µm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, p. 328, 1996.
    [29] D. W. Tu, S. Wang. J. S. M. Liu, K. C. Hwang, W. Kong, P. C. Chao, and K.Nichols, "High-performance double-recess InAlAs/InGaAs power metamorphic HEMT on GaAs substrate,” IEEE Microwave Guide. Wave Lett., vol. 9, p. 458,1999.
    [30] M. Behet, K. Eanden, G. Borghs, and A. Behres, “Metamorphic InGaAs/InAlAs quantum well structures grown on a GaAs substrates for high electron mobility transistor applications,” Appl. Phys. Lett., vol. 73, p. 2760, 1998.
    [31] K. C. Hwang, P. C. Chao, C. Creamer, K. B. Nichols, S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, “Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT’s,” IEEE Electron Device Lett., vol. 20, p. 551, 1999.
    [32] D. M. Gill, P. N. Uppal, and S. P. Svensson, “Selective wet etching of lattice-matched InGaAs/InAlAs on InP and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B, vol. 14, p. 3400, 1996.
    [33] W. E. Hoke, P. S. Lyman, C. S. Whelan, J. J. Mosca, A. Torabi, K. L. Chang, and K. C. Hsieh, “Growth and characterization of metamorphic Inx(AlGa)1-xAs/InxGa1-xAs high electron mobility transistor material and devices with x = 0.3-0.4,” J. Vac. Sci. Technol. B, vol. 18, p. 1638, 2000.
    [34] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. Mctaggart, S. M. Lardizabal, and K. Hetzler, “Molecular beam  epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrate,” J. Vac. Sci. Technol. B, vol. 17, p. 1131, 1999.
    [35] C. S. Whelan, W. E. Hoke, R. A. Mctaggart, S. M. Lardizabal, P. S. Lyman, P. F. Marsh, and T. E. Kazior, “Low noise In0.32(AlGa)0.68As/ In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,”IEEE Electron Device Lett., vol. 21, p. 5, 2000.
    [36] C. S. Whelan, P. F. Marsh, W. E. Woke, R. A. McTaggart, P. S. Lyman, P. J. Lemonias, S. M. Lardizabal, R.E. Leoni III, S. J. Lichwala, and T. E. Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplifier and devices on GaAs substrate,” IEEE J. Solid-State Circuits, vol. 35, p. 1307, 2000.
    [37] N. Rorsman, C. Karlsson, S. M. Wang, H. Zirath, and T. G. Andersson, “DC and RF performance of 0.15 µm gate length In0.70Al0.30As/In0.80Ga0.20As HFETs on GaAs substrate,” Electron. Lett., vol. 31, p. 1114, 1995.
    [38] L. M. Jelloain, M. Matloubian, T. Liu, and M. A. Thompson, “InP-based HEMT’s with Al0.48In0.52AsxP1-x schottky layer,” IEEE Electron Device Lett., vol. 15, p. 172, 1994.
    [39] S. R. Bahl, and J. A. Del Alamo,“Physics of breakdown in InAlAs/n+-InGaAs heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 41, p. 2268, 1994.
    [40] J. Dichmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs high electron mobility transistors on InP. I: Off-state,” Jpn, J. Appl. Phys., vol. 34, p. 66, 1995.
    [41] J. Dichmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs high electron mobility transistors on InP. II: On-state,” Jpn, J. Appl. Phys.,vol. 34, p. 1805, 1995.
    [42] M. H. Somerville, R. Blanchard, J. A. Del Alamo, G. Duh, and P. C. Chao,“On-state breakdown in power HEMT’s: measurements and modeling,” in IEDM Tech. Dig., p. 553, 1997.
    [43] G. Meneghesso, A. Mion, A. Neviani, M. Matloubian, J. Brown, M. Hafizi, T. Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, "Effects of channel quantization and temperature on off-state and on-state breakdown in composite channel and conventional InP-based HEMT’s,” in IEDM Tech. Dig.,p. 43, 1996.
    [44] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman,“Semi-analytical analysis for optimization of 0.1 µm InGaAs-channel MODFET’s with emphasis on on-state breakdown and reliability,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 357, 1997.
    [45] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness,” IEEE Trans. Electron. Devices, vol. 46, p. 2, 1999.
    [46] M. H. Somerville, J. A. Del Alamo, and W. Hoke, “A new physical model for the kink effect on InAlAs/InGaAs HEMT’s,” in IEDM Tech. Dig., p. 201, 1995.
    [47] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, and Y. Ishii, “Mechanisms and structural dependence of kink phenomena in InAlAs/InGaAs HEMT’s,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 365, 1997.
    [48] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, "Influence of Hole Accumulation on the source resistance, kink effect and on-state breakdown of InP-based HEMTs: light irradiation study,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 456. 2001.
    [49] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron. Devices, vol. 47, p. 922, 2000
    [50] R. T. Webster, S. Wu, and F. M. Anwar, “Impact ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Device Lett., vol. 21, p. 193, 2000.
    [51] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “Impact ionization suppression by quantum confinement: effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET’s,” IEEE Trans. Electron. Devices, vol. 46, p. 826, 1999.
    [52] A. Mazzanti, G. Verzellesi, G. Sozzi, R. Menozzi, C. Lanzieri, and C. Canali, “Physical investigation of trap-related effects in power HFETs and their reliability implications,” IEEE Trans. Device and Materials Reliability, vol. 2, p. 65, 2002.
    [53] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, and J. C. D. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT: modeling and measurements,” IEEE Trans. Electron. Devices, vol. 48, p. 1037, 2001.
    [54] M. Zaknounce, B. Bonte, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67 As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,” in Proc. 56th Device Research Conf, p. 34, 1998.
    [55] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. J. Chen,“Characteristics of In0.52Al0.48As/InxGa1-xAs HEMT’s with various InxGa1-xAs channels,” Solid-State Electronic., vol. 48, p. 119, 2004.
    [56] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin,“Characteristics of In0.52Al0.48As/ InxGa1-xAsyP1-y/In0.52Al0.48As HEMT’s,”J. Vac. Sci. Technol. B, vol. 22, p.1044, 2004.
    [57] Y. J. Chen, W.C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu, and Y. H. Wu,”InAlAs/InGaAs doped channel heterostructure for high-linearity,     high-temperature and high-breakdown operations,” Solid-State Electronic., vol. 49, p.163, 2005.
    [58] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol. 26, p. 59, 2005.
    [59] Y. J. Chen, W.C. Hsu, C.S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic  high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85, p.5087, 2004.
    [60] Y. J. Li, W. C. Hsu, I. L. Chen, C. S. Lee, Y. J. Chen, and I. Lo,“Improved characteristics of novel metamorphic InAlAs/InGaAs HEMT with symmetric graded InxGa1-xAs channel,” J. Vac. Sci. Technol. B, vol. 22, p.2429, 2004.
    [61] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/GaAs composite Doped Channel HFET,” IEEE Trans. Electron Devices, vol. 48, p. 2677, 2001.
    [62] Y. J. Lee, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of Al0.2Ga0.8As/In0.22Ga0.78As pseudomorphic double  heterojunction modulation doped filed-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, p. 760, 2003.
    [63] S. R. Bahl, J. A. Del Alamo, J. Dickmann, and S. Schildberg, “Off-state breakdown voltage in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron   Devices, vol. 42, p. 15, 1995.
    [64] K. H. Yu, K. W. Lin, C. C. Chuan, W. L. Chang, J. H. Tsai, S. Y. Cheng, and W. C. Wei, “Temperature dependence of gate current and breakdown behaviors in an n+-GaAs/p+-InGaP/n—GaAs high-barrier gate field effect transistor,”Jpn. J. Appl. Phys., vol. 40, p. 24, 2001.
    [65] S. S. Lu, Y. W. Hsu, C. C. Meng, and L. P. Chen, “Single-voltage-supply operation of Ga0.51In0.49P/In0.15Ga0.58As insulated-gate FET’s for power application,” IEEE Electron Device Lett.,. vol. 20, p. 21, 1999.
    [66] T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamanoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operation with a 3.5 V single voltage supply,” in Proc. GaAs IC Symp., p. 107, 1996.
    [67] N. Iwata, K. Inosako, and M. Kuzuhara, “3 V operation L-band power double-doped heterojunction FET’s,” in IEEE MTT-S Dig., p. 1465, 1993.
    [68] K. Inosako, K. Matsunaga, Y. Okamoto, and M. Kuzuhara, “Highly efficient double-doped hetro-junction FET’s for battery-operation portable power applications,” IEEE Electron Device Lett.,. vol. 15, p. 248, 1994.
    [69] N. Okamoto, T. Takahashi, K. Imanishi, K. Sawada, and N. Hara, “Suppression of drain conductance dispersion in InP-based HEMTs for Broadband Optical Communication Systems,” IEDM Tech. Dig., p. 189, 2001.
    [70] Y. C. Chen, R. Grundbacher, T. P. Chin, M. Barsky, R. Lai, L. W. Yang, T. Block, M. Wojtowicz, H. C. Yen, A. Oki, and D. C. Streit, “21 GHz highly efficient composite-channel InP HEMT,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 75, 2000.
    [71] F. Robin, O. J. Homan, and W. Bächtold,“2D simulations of InGaAs/InAlAs/InP HEMTs with asymmetrical gate recess,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 98, 2000.
    [72] B. Georegescu, M. A. Py, A. Souifi, G. Post, and G. Guillot, “New aspects and mechanism of kink effect in InAlAs/InGaAs/InP inverted HFET’s,” IEEE Electron Device Lett.,. vol. 19, p. 154, 1998.
    [73] K. Onda, A. Fujihara, A. Wakejima, E. Mizuki, T. Nakayama, H. Miyamoto, Y. Ando, and M. Kanamori, “InAlAs/InGaAs channel composition modulated    transistors with InAs channel and AlAs/InAs superlattice barrier layer,”IEEE Electron Device Lett.,. vol. 19, p. 300, 1998.
    [74] J. B. Shealy, M. Matloubian, T. Liu, R. Virk, J. Pusl, and C. Ngo, “K-band high-power/ efficient/breakdown GaInAs/InP composite channel HEMT’s,” IEEE Microwave Guide. Wave Lett., vol. 7, p. 261, 1997.
    [75] J. B. Shealy, M. Matloubian, T. Y. Liu, M. A. Thompson, M. M. Hashemi, S. P. Denbaars, and U. K. Mishra, “High-performance submicrometer gatelength GaInAs/InP composite channel HEMT’s with regrown ohmic contacts,” IEEE Electron Device Lett.,. vol. 17, p. 540, 1996.
    [76] C. Ladner, C. B. Aupetit, A. Nezzari, and J. Décobert, “Comparative investigation of gate leakage current in single and double channel InP  HEMT,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 505, 1998.
    [77] P. Chevalier, X. Wallart, B. Bonte, and R. Fauquembergue,“V-band high-power/low-voltage InGaAs/InP composite channel HEMTs,” Electron. Lett., vol. 34, p. 409, 1998.
    [78] Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle and A. Cappy, “MBE grown InAlAs/InGaAs lattice mismatched layers for HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124, p. 734, 1998.
    [79] S.M. Sze, Semiconductor Devices Physics and Technology, New York: Wiley, p. 48, 2002.
    [80] D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva and I. Adesida, “High performance 0.35 µm gate-length monolithic enhancement/depletion-mode  metamorphic In0.52Al0.48As/In0.53Ga0.47As HEMT on GaAs substrate,” IEEE Electron Device Lett., vol. 22, p. 364, 2001.
    [81] M. Boudrissa, E Delos, X Wallaert, D. Theron and J. C. De Jaeger, “A 60 GHz high power composite channel GaInAs/InP HEMT on InP substrate with LG=0.15 μm,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p. 196, 2001.
    [82] Y. J. Chan, C. S. Wu, C. H. Chen, J. L., and J. I. Chyi, “Characteristics of In0.52(AlxGa1-x)0.48As/In0.53Ga0.48As (0 ≤ x ≤ 1) heterojunction and its application on HEMT’s,” IEEE Trans. Electron. Devices, vol. 44, p. 708, 1997.
    [83] K. Yuan and K. Radhakrishnam, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.48As metamorphic HEMT using InxGa1-xP graded buffer,” in Proc. Int. Conf. Indium Phosphide and Related Materials, p.161, 2002.
    [84] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage and high-temperature operations,” IEEE Trans. Electron. Devices, vol. 48, p. 1522, 2001.
    [85] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei,, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys., vol. 38, p. L1385, 1999.
    [86] K. J. Chen, T. Enoki, K. Maezawa, K. Arai and M. Yamamoto, “High-performance InP-based enhancement-mode HEMT’s using non-alloyed ohmic  contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron. Devices, vol. 43, p. 252, 1996.
    [87] J. del Alamo, and M. Somerville, “Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs PHEMTs,” IEEE J. Solid State Circuits, vol. 34, p. 1204, 1999.
    [88] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMTs utilizing low-temperature AlInAs buffers grown by MBE,” IEEE Electron Device Lett., vol. 10, p. 565, 1989.
    [89] Y. Hori and M. Kuzubara, “Improved model for kink effect in AlGaAs/InGaAs heterojunction FET’s,” IEEE Trans. Electron Devices, vol. 41, p. 2262, 1994.
    [90] T. Enoki, T. Kobayashi, and Y. Ishii, “Device technologies for InP-based HEMT’s and their applications to ICs,” in IEEE GaAs IC Symp., p. 337, 1994.
    [91] T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, and Y. Ishii, “An analysis of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional device simulation,” IEEE Trans. Electron. Devices, vol. 45, p. 2390, 1998.
    [92] William Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York: Wiley, p. 103, 1998.
    [93] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of           In0.425Al0.575As/InxGa1-xAs metamorphic HEMTs with pseudomorphic and Symmetrically graded channels,” accepted to be published in IEEE Trans. Electron. Devices.
    [94] C. Gässler, V. Ziegler, C. Wölk, R. Deufel, F. J. Berlec, N. Käb, and E. Kohn, “Metamorphic HFETs on GaAs with InP-subchannels for device performance improvements,” IEDM Tech. Dig., p. 182, 2000.
    [95] Y.C. Lien, E.Y. Chang, H.C. Chang, L.H. Chu, G.W. Huang, H.M. Lee, C.S. Lee, S.H. Chen, P.T. Shen, and C.Y. Chang, “Low-noise metamorphic HEMTs with reflowed 0.1µm T-gate,” IEEE Electron Device Lett., vol. 25, p. 348, 2004.
    [96] B. H Lee, D. An, M. K. Lee, B. O. Lim, S. D. Kim, and J. K. Rhee, “Two-stage broadband high-gain W-band amplifier using 0.1µm metamorphic HEMT technology,” IEEE Electron Device Lett., vol. 25, p. 766, 2004.
    [97] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, “BCB-bridged distributed wideband SPST switch using 0.25µm In0.5Al0.5As-In0.5Ga0.5As   metamorphic HEMTs,” IEEE Trans. Electron. Devices, vol. 52, p. 1, 2005.
    [98] C, K. Lin, J. C. Wu, W. K. Wang, T. J. Chan, J. S. Wu, Y. C. Pan, C. C. Tsai, and J. T. Lai, “Performance enhancement by the In0.65Ga0.35As   pseudomorphic channel on the In0.5Al0.5As metamorphic buffer layer,” IEEE Trans. Electron. Devices, vol. 51, p. 1214, 2004.
    [99] Y. J. Chen, Z. B. Wang, K. H. Su, and W. C. Hsu, “In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT on GaAs,” in Proc. Int. Conf. IVESC, p.372,  2004.
    [100] Y. Zhang, C. S. Whelan, R. Leoni, P. F. Marsh, W. E. Hoke, J. B. Hunt, C. M. Laighton, and T. E. Kazior, “40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology,” IEEE Electron Device Lett., vol. 24, p. 529, 2003.
    [101] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0-35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., vol. 24, p. 724, 2003.
    [102] C. Xin, I. Thayne, S. Thoms, M. Holland, and C. Stanley, “High performance 50 nm T-gate In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistors,” ESSDERC, p. 517, 2003.
    [103] M. H. Somerville, J. A. del Alamo, and W. Hoke, “Direct correlation between impact ionization and the kink effect in InAlAs/InGaAs HEMT’s,”IEEE Electron Dev. Lett., vol. 17, p. 473, 1996.
    [104] M. H. Somerville, C. S. Putnam, and J. A. del Alamo, “Determining dominant breakdown mechanisms in InP HEMTs,” IEEE Electron Dev. Lett., vol. 22, p. 565, 2001.
    [105] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura,“Influence of hole accumulation on source resistance, kink effect and on-state breakdown of InP-based high electron mobility transistors: light irradiation study,” Jpn, J. Appl. Phys., vol. 41, p. 1104, 2002.
    [106] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “On-state breakdown in power HEMT’s: measurements and modeling,” IEEE Trans. Electron. Devices, vol. 46, p. 1087, 1999.
    [107] M. H. Somerville, R. Blanchard, J. A. del Alamo, G. Duh, and P. C. Chao,“A new gate current extraction technique for measurement of on-state  breakdown voltage in HEMT’s,” IEEE Electron Dev. Lett., vol. 19, p. 405, 1998.
    [108] R, Menozzi, M. Borgarino, Y. Baeyens, M. V. Hove, and F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMT’s,” IEEE Microwave Guide. Wave Lett., vol. 7, p. 3, 1997.
    [109] C. S. Putnam, M. H. Somerville, J. A. del Alamo, P. C. Chao, and K. G. Duh,“Temperature dependence of breakdown voltage in InAlAs/InGaAs HEMTs: theory and experiments,” in Int. Conf. Indium Phosphide and Related Materials, p.197, 1997.
    [110] A. A. Moolji, S. R. Bahl, and J. A. del Alamo, “Impact ionization in InAlAs/InGaAs HFET’s,” IEEE Electron Dev. Lett., vol. 15, p. 313, 1994.
    [111] G. Meneghesso, D. Buttari, E. Perin, C. Canali, and E. Zanoni,“Improvement of DC, low frequency and reliability properties of InAlAs/InGaAs InP-Based HEMTs by means of an InP etch stop layer,” IEDM Tech. Dig., p.227, 1998.
    [112] G. Meneghesso, R. Luise, D. Buttari, A. Chini, H. Yokoyama, and T. Suemitsu, “Parasitic effects and long term stability of InP-HEMTs,” Microelectron Reliab., vol. 40, p. 1715, 2000.
    [113] A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Aesida, “Enhancement-mode high electron mobility transistors (E-HEMT’s) Lattice-Matched to InP,” IEEE Trans. Electron. Devices, vol. 45, p. 2422, 1998.
    [114] Mike Golio, “The RF and Microwave handbook,” CRC Press, 2001.
    [115] E. Bayar, and A. H. Aghrami, “Miniaturized L-band MIC LNA design,”Electron. Lett., vol. 29, p.1698, 1993.
    [116] B. G. Choi, Y. S. Lee, C. S. Park, and K. S. Yoon, “Super low noise C-band PHEMT MMIC low noise amplifier with minimum Input Matching Network,”  Electron. Lett., vol. 36, p.1627, 2000.
    [117] F. Ali, and A. Gupta, “HEMTs and HBTs: Devices, Fabrication, and Circuits,” Artech House, 1991.
    [118] G. Dambrine, A. Cappy, F. Heliodore, and E. Playerz, ”A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech.,, vol. 36, p. 1151, 1988.
    [119] M. Berroth and R. Bosch, “High-Frequency Equivalent Circuit of GaAs FET’s for Large-Signal Applications,” IEEE Trans. Microwave Theory Tech.,, vol.39, p. 224, 1991.
    [120] Y. J. Chen, Y. W. Chen, Y. S. Lin, C. Y. Yen, Y. J. Li, and W. C. Hsu, “An Improved In0.34Al0.34As0.85Sb0.15/InP Heterostructure Utilizing Coupled δ-Doping InP Channel,” Jpn. J. Appl. Phys., vol. 40, p. L7, 2001.

    下載圖示 校內:立即公開
    校外:2005-07-12公開
    QR CODE