簡易檢索 / 詳目顯示

研究生: 林冠澤
Lin, Kuan-Tse
論文名稱: 整合順向與降昇壓轉換器之無橋式功率因數修正器研製
Bridgeless Power Factor Correction with Integration of Forward and Buck-Boost Converters
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 74
中文關鍵詞: 無橋式整流器順向-降昇壓式轉換器直接功率傳送功率因數校正總諧波失真
外文關鍵詞: Bridgeless Rectifier, Forward Integrated Buck-Boost Converter, Direct Power Transfer, Power Factor Correction, Total Harmonic Distortion
相關次數: 點閱:170下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一整合順向與降昇壓轉換之無橋式功率因數修正器,在架構上可視為單一開關控制兩組子轉換器,共同分擔與傳遞功率。其中,透過降昇壓式子轉換器高功因特性及順向式子轉換的變壓器適當設計,能夠有效改善輸入電流總諧波失真;在功率分配比例上,大部分的功率係透過順向式子轉換器直接傳輸至負載,以降低變壓器鐵芯的體積及損失,且在功率傳輸過程中,不需如Cúk、SEPIC及Zeta轉換器,使用全橋二極體整流器及耦合電容,因此可減少電流路徑上之功率元件,進而降低導通損失和元件熱損,提高轉換效率。本文架構操作於不連續導通模式,無需電流控制迴路,功率開關亦能共用控制訊號,因此可減低控制系統複雜性。
    本論文詳述所提之轉換器操作原理、穩態分析及參數設計流程,為了驗證轉換器效能及可行性,本文模擬與實作一額定功率135W,輸入電壓90Vrms到130Vrms(60Hz),輸出電壓48V的雛型電路。由實驗結果可知,在不同輸入電壓及負載下,所實現電路之輸入電流總諧波失真因數皆可低於13.4%,且轉換效率最高達90.7%。

    This thesis proposes a bridgeless power factor correction with integration of forward and buck-boost converters. The rectifier can be considered equivalent to a single switch that controls two subconverters (buck-boost and forward subconverters) that share and deliver the total output power synchronously. By using a high power factor for the buck-boost subconverter and an appropriate transformer design for the forward subconverter, the total harmonic distortion (THD) of the input current can be effectively reduced. To reduce the volume and core loss of the transformers, the forward subconverter directly delivers a major part of the output power to the load. Since no full-bridge rectifier or coupling capacitor is used in the current flowing path in the power conversion process (similar to the Cúk converter, single-ended primary inductor converter, and Zeta converter), conduction losses are reduced and the efficiency and thermal performance of the proposed rectifier are enhanced. Moreover, because the proposed rectifier is designed to operate in the discontinuous inductor current mode, the current loop is not required. Furthermore, the two switches in the circuit can be controlled using a single control signal, which simplifies the design of the control system considerably.
    The operating principles, steady-state analysis, and design guidelines of the proposed rectifier are detailed in this thesis. To verify the effectiveness and feasibility of the proposed rectifier, simulations and experiments are conducted using a 135 W prototype circuit with an input voltage in the range of 90–130 Vrms (60 Hz) and an output voltage of 48 Vdc. The experimental results show that the THD of the input current is less than 13.4% under different input voltages and output powers. Moreover, the prototype circuit shows a maximal efficiency of 90.7%.

    摘要 I ABSTRACT II 誌謝 IV CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1. INTRODUCTION 1 1.1. Background and Motivation 1 1.2. Review of Bridgeless PFC Rectifier 6 1.3. Research Method and Objectives 7 1.4. Organization of the Thesis 8 CHAPTER 2. REVIEW OF BRIDGELESS PFC RECTIFIERS 9 2.1. Fundamentals of PFC 9 2.2. Introduction to Bridgeless PFC Rectifiers 11 2.3. Review of Bridgeless PFC Rectifiers With Low Output Voltage 13 2.3.1. Cúk/SEPIC PFC Rectifiers 13 2.3.2. Buck PFC Rectifier 15 2.3.3. Buck-Boost PFC Rectifier 17 2.3.4. Forward PFC Rectifier 18 2.3.5. Flyback PFC Rectifier 19 2.4. Summary 20 CHAPTER 3. PROPOSED BRIDGLESS PFC RECTIFIER 21 3.1. Rectifier Configuration 21 3.2. Control Strategy 23 3.3. Operating Principle 24 3.4. Steady-State Analysis and Design 30 3.4.1. Power Sharing Ratio 30 3.4.2. Voltage Conversion and Duty Ratio 35 3.4.3. Boundary Conditions 35 3.4.4. Switching Component Stress 37 3.4.5. Design of Input Line Filter 38 3.4.6. Design of Output Capacitor 38 3.5. Summary 39 CHAPTER 4. SIMULATION AND EXPERIMENT 41 4.1. Specifications 41 4.2. Control System and Peripheral Circuits 44 4.2.1. Control Scheme 45 4.2.2. Feedback Circuit 47 4.2.3. Gate Driving Circuit 48 4.3. Simulated and Experimental Results 49 4.3.1. Input Voltage and Current Waveforms 49 4.3.2. Output Voltage Waveforms 54 4.3.3. Voltage and Current Waveforms During the Switching Period 56 4.3.4. Power Factor 61 4.3.5. Conversion Efficiency 62 4.3.6. Comparison 63 4.4. Summary 68 CHAPTER 5. CONCLUSION AND FUTURE WORK 69 5.1. Conclusion 69 5.2. Future work 70 REFERENCES 71

    [1] Y. Ji and F. Wang, “Single-phase diode rectifier with novel passive filter,” IEE Proceeding Circuits, Devices and Systems, vol. 145, no. 4, pp. 254-259, Aug. 1998.
    [2] M. M. Jovanovic and D. E. Crow, “Merits and limitations of full-bridge rectifier with LC filter in meeting IEC 1000-3-2 harmonic-limit specifications,” IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 551-557, Mar/Apr. 1997.
    [3] S. Herraiz, L. Sainz, and J. Pedra, “Line side behavior of single-phase uncontrolled rectifiers,” in Proceeding Ninth International Conference, Harmonics and Quality of Power, ICHQP, vol. 2, pp. 577-582, Oct. 2000.
    [4] International Electrotechnical Commission, Limits for harmonic current emissions, IEC EMC part 3-2, 3rd ed., Nov. 2009.
    [5] M. H. Rashid, Power electronics handbook, 3rd ed. Elsevier Inc., 2011.
    [6] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality ac–dc converters,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 962-981, Oct. 2003.
    [7] Power factor correction (PFC) handbook, 5th ed. ON Semiconductor, 2014.
    [8] Y. S. Kim, W. Y. Sung, and B. K. Lee, “Comparative performance analysis of high density and efficiency PFC topologies,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2666-2679, Jun. 2014.
    [9] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
    [10] P. Kong, S. Wang, and F. C. Lee, “Common mode EMI noise suppression for bridgeless PFC converters,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 291-297, Jan. 2008.
    [11] W. Y. Choi, J. M. Kwon, and B. H. Kwon, “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” IET Power Electronics, vol. 1, no. 1, pp. 194-202, Jun. 2008.
    [12] Y. Jang and M. M. Jovanovic, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 85-93, Jan. 2009.
    [13] H. Y. Tsai, T. H. Hsia, and D. Chen, “A family of zero-voltage-transition bridgeless power-factor-correction circuits with a zero-current-switching auxiliary switch,” IEEE Transactions on Industrial Applications, vol. 58, no. 5, pp. 1848-1845, May 2011.
    [14] A. A. Fardoun, E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “A bridgeless resonant pseudoboost PFC rectifier,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5949-5960, Nov. 2014.
    [15] A. J. Sabzali, E. H. Ismail, A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Cúk PFC rectifiers with low conduction and switching losses,” IEEE Transactions on Industrial Applications, vol. 47, no. 2, pp. 873-881, Mar/Apr. 2011.
    [16] A. A. Fardoun, E. H. Ismail, A. J Sabzali, and M. A. Al-Saffar, “New efficient bridgeless Cúk rectifiers for PFC applications,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3292-3301, Jul. 2012.
    [17] Y. Jang and M. M. Jovanovic, “Bridgeless high-power-factor buck converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 5328-5334, Feb. 2011.
    [18] A. A. Fardoun, E. H. Ismail, N. M. Khraim, A. J. Sabzali, and M. A. Al-Saffar, “Bridgeless high-power-factor buck-converter operating in discontinuous capacitor voltage mode,” IEEE Transactions on Industrial Applications, vol. 50, no. 5, pp. 3457-3467, Sep/Oct. 2014.
    [19] W. Wang, H. Liu, and D. Xu, “A novel bridgeless buck-boost PFC converter,” in Proceeding Power Electronics Specialists Conference, PESC, pp. 1304-1308, Jun. 2008.
    [20] V. Bist and B. Singh, “An adjustable-speed PFC bridgeless buck–boost converter-fed BLDC motor drive,” IEEE Transactions on Industrial Applications, vol. 61, no. 6, pp. 2665-2677, Jun. 2014.
    [21] Z. Lan, X. Xie, H. Dong, and S. Liu, “A single-stage high power factor bridgeless forward converter with an improved constant on-time control,” in Proceeding Future Energy Electronics Conference, IFEEC, pp. 605-610, Nov. 2013.
    [22] J. W. Shin, S. J. Choi, and B. H. Cho, “High-efficiency bridgeless flyback rectifier with bidirectional switch and dual output windings,” IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4752-4762, Sep. 2014.
    [23] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. T. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki, “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2606-2617, May 2014.
    [24] N. Mohan, T. M. Undelano, and W. P. Robbins, Power electronics, 3rd ed. John Wiley and Sons Inc., 2003.
    [25] A. F. D. Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” in Proceeding Telecommunication Energy Conference, INTELEC, Jun. 1999.
    [26] H. E. Tacca, “Power factor correction using merged flyback-forward converters,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 585-594, Jul. 2000.
    [27] T. J. Liang, T. H. Ai, and J. F. Chen, “Flyback-forward power factor correction circuit with line-frequency ripple suppression,” IEE Proceeding Electric Power Application, vol. 149, no. 6, pp. 474-480, Nov. 2002.
    [28] Y. Choi, M. H. Keum, S. K. Han, and J. I. Kang, “High efficiency and high power factor single-stage balanced forward-flyback converter”, in Proceeding The IEEE 39th Annual Conference, IECON, pp. 822-827, Nov. 2013.
    [29] K. Taniguchi and Y. Nakaya, “Analysis and improvement of input current waveforms for discontinuous-mode boost converter with unity power factor”, in Proceeding Power Conversion Conference, PCC, pp. 399-404, Aug. 1997.
    [30] M. H. L. Chow, K. W. Siu, C. K. Tse, and Y. S. Lee, “A novel method for elimination of line-current harmonics in single-stage PFC switching regulators,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 75-83, Jan. 1998.
    [31] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 199-205, Jul. 1996.
    [32] Texas Instruments Inc. TMS320F28069 PicoloTM Microcontrollers [Online]. Available: http://www.ti.com.
    [33] M. Rucinski, P. Musznicki, and P. J. Chrzan, “Electromagnetic interference frequencies prediction model of flyback converter for snubber design,” IET Power Electronics, vol. 8, no. 6, pp. 994-999, Jun. 2015.
    [34] L. Chen, H. Hu, Q. Zhang, A. Amirahmadi, and I. Bataresh, “A boundary-mode forward-flyback converter with an efficient active LC snubber circuit,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2944-2958, Jun. 2014.

    下載圖示 校內:2020-08-10公開
    校外:2020-08-10公開
    QR CODE