| 研究生: |
陳奕元 Chen, Yih-Yuan |
|---|---|
| 論文名稱: |
以田口法與電容-電壓非破壞式量測分析及優化串聯式有機發光二極體電荷產生層 Investigation and Optimization the CGL of Tandem OLEDs by Taguchi Method and Nondestructive C-V Measurement |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung 朱聖緣 Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 有機發光二極體 、串聯結構 、電容-電壓量測 、田口法 |
| 外文關鍵詞: | OLED, Tandem, Taguchi method, Admittance spectroscopy, Impedance spectroscopy |
| 相關次數: | 點閱:76 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
串聯式結構是有機發光二極體中一種有效提升元件亮度以及效率的方法,針對此領域的研究頗多,研究方向大多是連接層(載子產生層)的材料以及其運作機制與原理探討。而本論文藉由簡單可靠的田口方法來優化串聯式結構。此外,我們使用電容-電壓量測來驗證中間層性能並進行串聯有機發光二極體性能預測,此分析除了能夠利用電容峰值探討載子產生的能力之外,本論文另外發現預測元件起始電壓及電子、電洞注入傳輸層之能力。
在田口法實驗中,我們針對串聯元件中的連接層(載子產生層)的摻雜濃度、厚度以及傳輸層的厚度還有捕捉層的結構做變化,觀察改變參數後效率的變化以做優化;在電容-電壓量測中,本論文將連接層(載子產生層)從串聯元件中獨立出來,並針對其摻雜濃度、厚度變化後電容値的改變做分析以探討連接層(載子產生層)產生載子之能力。
在實驗過程中我們利用上述兩種方法發現發光單元中的捕捉層與載子產生層P型材料摻雜濃度扮演重要的角色,對串聯式結構元件發光效率有很大的影響。透過改變各項實驗因子我們所得到的最佳化結構發光效率達到6.13 cd/A,比較以相同發光層Alq3製成的單一元件(Single cell)發光效率變為1.98倍。與其他文獻比較,文獻中比較以相同發光層C545T:Alq3製成的單一元件(Single cell)發光效率變為2.04倍,本實驗達到接近的效率變化。
在實驗後本論文證明使用田口法確實能夠提升元件的效率,從未優化時的效率3.56 cd/A提升至6.13 cd/A。且電容-電壓量測的結果能夠與田口法相互呼應,透過電容値的趨勢變化分析出元件的效能。利用這兩種手法能夠在有限的實驗內取得可靠的最佳化結果。
In this study, we provide a simple and reliable Taguchi method to optimize a tandem organic light-emitting diode (OLED). Furthermore, we use C-V testing to verify intermediate connector (IC) performance and make tandem OLED performance predictions. We demonstrate Taguchi method works correctly. In addition, C-V testing can be a reliable way to resolve IC mechanisms and predict OLED efficiency directly.
[1] J.-P. Yang, W.-Q. Wang, L.-T. Shang, L.-W. Cheng, X.-S. Shen, X.-H. Zeng, et al.," Organic Electronics, vol. 46, pp. 145-149, 2017.
[2] J.-P. Yang, Q.-Y. Bao, Y. Xiao, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, et al.," Organic Electronics, vol. 13, pp. 2243-2249, 2012.
[3] M. Pope, H. Kallmann, and P. Magnante," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 1963.
[4] J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, et al.," nature, vol. 347, p. 539, 1990.
[5] D. Zhao, H. Liu, Y. Miao, H. Wang, B. Zhao, Y. Hao, et al.," Organic Electronics, vol. 32, pp. 1-6, 2016.
[6] J. Liu, S. Huang, X. Shi, X. Wu, J. Wang, and G. He," The Journal of Physical Chemistry C, vol. 117, pp. 13887-13893, 2013.
[7] C.-W. Chen, Y.-J. Lu, C.-C. Wu, E. H.-E. Wu, C.-W. Chu, and Y. Yang," Applied Physics Letters, vol. 87, p. 241121, 2005.
[8] H. Sun, Q. Guo, D. Yang, Y. Chen, J. Chen, and D. Ma," Acs Photonics, vol. 2, pp. 271-279, 2015.
[9] B. Jiao, Z. Wu, Z. Yang, and X. Hou," physica status solidi (a), vol. 210, pp. 2583-2587, 2013.
[10] Y.-H. Lee, M.-W. Lin, T.-C. Wen, and T.-F. Guo," Journal of Applied Physics, vol. 114, p. 154512, 2013.
[11] J.-M. Liu, P.-Y. Lu, and W.-K. Weng," Materials Science and Engineering: B, vol. 85, pp. 209-211, 2001.
[12] J.-R. Shie, A. Chittawanij, L.-A. Hong, C.-J. Lai, Y.-J. Lai, F.-S. Juang, et al., " 2016 5th International Symposium on Next-Generation Electronics (ISNE), pp. 1-2, 2016.
[13] S. Nowy, W. Ren, J. Wagner, J. A. Weber, and W. Brütting, " Organic Light Emitting Materials and Devices XIII, p. 74150G, 2009.
[14] S. Nowy, W. Ren, A. Elschner, W. Lövenich, and W. Brütting," Journal of Applied Physics, vol. 107, p. 054501, 2010.
[15] S. Tsang, S. So, and J. Xu," Journal of Applied Physics, vol. 99, p. 013706, 2006.
[16] S. Tsang, K. Tong, S. Tse, and S. So, " Organic Light Emitting Materials and Devices X, p. 633313, 2006.
[17] B. S. Kim, H. Chae, H. K. Chung, and S. M. Cho," AIP Advances, vol. 8, p. 065303, 2018.
[18] M. Lamorte and D. Abbott," Solid-State Electronics, vol. 22, pp. 467-473, 1979.
[19] J. Kim, E. Hall, O. Sjölund, and L. Coldren," Applied Physics Letters, vol. 74, pp. 3251-3253, 1999.
[20] X. Guo, G.-D. Shen, G.-H. Wang, W.-J. Zhu, J.-Y. Du, G. Gao, et al.," Applied Physics Letters, vol. 79, pp. 2985-2986, 2001.
[21] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, et al., " SID Symposium Digest of Technical Papers, pp. 979-981, 2003.
[22] T. Tsutsui and M. Terai," Applied physics letters, vol. 84, pp. 440-442, 2004.
[23] C.-C. Chang, J.-F. Chen, S.-W. Hwang, and C. H. Chen," Applied physics letters, vol. 87, p. 253501, 2005.
[24] L. Liao, K. Klubek, and C. Tang," Applied physics letters, vol. 84, pp. 167-169, 2004.
[25] T.-Y. Cho, C.-L. Lin, and C.-C. Wu," Applied physics letters, vol. 88, p. 111106, 2006.
[26] M. K. Fung, K. M. Lau, S. Lai, C. W. Law, M. Y. Chan, C. S. Lee, et al.," Journal of Applied Physics, vol. 104, p. 034509, 2008.
[27] S. Lai, M. Chan, M. Fung, C. Lee, and S. Lee," Journal of applied physics, vol. 101, p. 014509, 2007.
[28] J. R. Lakowicz, in Principles of fluorescence spectroscopy, ed: Springer, 1999, pp. 1-23.
[29] L.-S. Liao, K. P. Klubek, and C. W. Tang, ed: Google Patents, 2006.
[30] C.-C. Chang, S.-W. Hwang, C. H. Chen, and J.-F. Chen," Japanese journal of applied physics, vol. 43, p. 6418, 2004.
[31] M.-H. Ho, M.-T. Hsieh, T.-M. Chen, J.-F. Chen, S.-W. Hwang, and C. H. Chen," Applied Physics Letters, vol. 93, p. 083505, 2008.
[32] S. Tanaka and C. Hosakawa, ed: Google Patents, 2000.
[33] H. Zhang, Y. Dai, D. Ma, and H. Zhang," Applied Physics Letters, vol. 91, p. 123504, 2007.
[34] D.-Y. Zhou, H. Z. Siboni, Q. Wang, L.-S. Liao, and H. Aziz," Journal of Applied Physics, vol. 116, p. 223708, 2014.
[35] L.-S. Liao, K. P. Klubek, D. L. Comfort, and C. W. Tang, ed: Google Patents, 2004.
[36] F. Guo and D. Ma," Applied Physics Letters, vol. 87, p. 173510, 2005.
[37] H. Kanno, Y. Hamada, K. Nishimura, K. Okumoto, N. Saito, H. Ishida, et al.," Japanese journal of applied physics, vol. 45, p. 9219, 2006.
[38] L.-S. Liao, K. P. Klubek, D. L. Comfort, and C. W. Tang, ed: Google Patents, 2005.
[39] Y.-S. Tyan, C. W. Tang, and L.-S. Liao, ed: Google Patents, 2005.
[40] Y. Dai, H. Zhang, Z. Zhang, Y. Liu, J. Chen, and D. Ma," Journal of Materials Chemistry C, vol. 3, pp. 6809-6814, 2015.
[41] M. Kröger, S. Hamwi, J. Meyer, T. Dobbertin, T. Riedl, W. Kowalsky, et al.," Physical Review B, vol. 75, p. 235321, 2007.
[42] J. Meyer, M. Kröger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, et al.," Applied Physics Letters, vol. 96, p. 93, 2010.
[43] Q. Bao, J. Yang, Y. Li, and J. Tang," Applied physics letters, vol. 97, p. 172, 2010.
[44] L. Duan, T. Tsuboi, and Y. Qiu," Chinese Journal of Chemistry, vol. 33, pp. 859-864, 2015.
[45] H. Kanno, R. J. Holmes, Y. Sun, S. Kena‐Cohen, and S. R. Forrest," Advanced Materials, vol. 18, pp. 339-342, 2006.
[46] J. P. Yang, Y. Xiao, Y. H. Deng, S. Duhm, N. Ueno, S. T. Lee, et al.," Advanced Functional Materials, vol. 22, pp. 600-608, 2012.
[47] B. Mo, X. Zhang, L. Liu, H. Wang, J. Xu, H. Wang, et al.," Optics & Laser Technology, vol. 68, pp. 202-205, 2015.
[48] M.-T. Hsieh, M.-H. Ho, K.-H. Lin, J.-F. Chen, T.-M. Chen, and C. H. Chen," Applied Physics Letters, vol. 96, p. 66, 2010.