簡易檢索 / 詳目顯示

研究生: 葉柏廷
Yeh, Bo-Ting
論文名稱: 具死區時間自我探勘之無感測數位式切換穩壓器
Sensorless Digital Switching Regulator with Dead-Time Self-Exploration
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 直流-直流轉換器死區時間數位控制
外文關鍵詞: DC-DC converter, dead-time, digital control
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實作具死區時間自我探勘之無感測數位式穩壓器,使用逐漸嶄露頭角的數位電源技術,無需任何功率級或電流感測元件,實現控制器搜尋最佳化死區,能有效提升電源轉換器效率,延長電池使用壽命。同時,也提出加速搜尋最佳化死區的機制,能大幅縮短搜尋時間,快速達到目標。此外,為了避免因為死區解析度太低,而尋找到非最佳化死區時間,使用延遲電路串的方式實現,可不必需要高頻率的操作即可提高死區解析度。本論文以FPGA為實驗平台,進行量測並驗證所提出之概念,證明確實能大幅縮短搜尋時間及提昇效率。最後將已在FPGA驗證過的電路架構整合delay-line ADC以TSMC 1P6M 0.18um製程下線並量測驗證,晶片大小為1.3 mm2且量測結果也與預期相符。

    This thesis presents a sensorless digital regulator with dead-time self-exploration. The dead-time controller utilizes the relationship between duty-cycle command and power-loss to find the optimized dead-time without sensing any of the power-stage signals. A exploration algorithm with delay-line circuits instead of high frequency is used to accelerate the optimized dead-time searching and provides high quantization resolution with dead-time step. This approach is well suited for digital IC implementation. The FPGA experimental results show that the proposed architecture can quickly search the optimization of the dead-time and improve efficiency. After FPGA prototyping, the proposed DC-DC converter has been implemented in TSMC 1P6M 0.18μm CMOS technology. The chip size is 1.3 mm2 and the experimental results proved the same with FPGA experimental results.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 3 1.3 目標與貢獻 7 1.4 論文架構簡介 8 第二章 基本降壓型數位控制切換穩壓器設計 9 2.1 系統架構 9 2.2 數位控制器設計 13 2.3 系統規格 23 2.4 ESL模型及模擬驗證平台 25 2.5 FPGA系統實作及量測結果 30 第三章 同步整流降壓型轉換器之dead-time控制 39 3.1 原理簡介 39 3.2 Dead-time於系統之操作情形 40 3.2.1 連續導通模式-電感電流大於零之情形 41 3.2.2 連續導通模式-電感電流部分低於零之情形 42 3.3 現有類比式dead-time控制技術 43 3.3.1 類比式fixed dead-time控制 43 3.3.2 Adaptive dead-time控制 44 3.3.3 Delay-locked-loop based dead-time控制 45 3.3.4 Load dependent dead-time控制 46 3.3.5 Dynamic dead-time控制 47 3.3.6 Robust dead-time控制 49 3.4 現有數位式dead-time控制技術 51 3.4.1 數位式fixed dead-time控制 51 3.4.2 Predictive dead-time控制 52 3.4.3 Perturbation-based extremum seeking dead-time控制 53 3.4.4 Sensorless dead-time控制 54 3.4.5 One-step dead-time控制 56 第四章 無感測之dead-time探勘及最佳化 59 4.1 簡介及問題 59 4.2 無感測式之dead-time快速探勘原理及設計 63 4.2.1 探勘最佳化dead-time演算法 63 4.2.2 Dead-time解析度的實現方式 69 4.3 最佳化dead-time的決定機制 71 4.4 外部情況變化中之最佳化dead-time的搜尋 73 第五章 具最佳化dead-time之降壓型數位控制切換穩壓器設計 76 5.1 系統架構與規格 76 5.2 數位控制器之運作流程 77 5.3 ESL模型及模擬驗證平台 78 5.4 FPGA系統實作及量測結果 85 5.5 比較與討論 94 第六章 晶片下線 95 6.1 系統架構與規格 95 6.2 模擬驗證 96 6.3 晶片照相圖與量測考量 99 6.4 量測設置與實驗結果 100 6.5 文獻比較表 107 第七章 結論與展望 108 7.1 總結與貢獻 108 7.2 未來工作及研究方向 108 附錄 110 參考文獻 110 投稿論文 113

    [1] S. Mapus, "Predictive Gate Drive Boots Synchronous dc/dc Power Converter Efficiency," Appl. Rep. SLUA281, Texas Instruments, Apr. 2003.
    [2] A. V. Peterchev and S. R. Sanders, "Digital Multimode Buck Converter Control With Loss-Minimizing Synchronous Rectifier Adaptation," IEEE Trans. Power Electronics, vol. 21, pp. 1588-1599, Nov. 2006.
    [3] V. Yousefzadeh and D. Maksimovic, "Sensorless optimization of dead times in DC-DC converters with synchronous rectifiers," in Proc. IEEE Applied Power Electronics Conference and Exposition, 2005, pp. 911-917.
    [4] V. Yousefzadeh and D. Maksimovic, "Sensorless optimization of dead times in DC-DC converters with synchronous rectifiers," IEEE Trans. Power Electronics, vol. 21, pp. 994-1002, Jul. 2006.
    [5] A. Zhao, A. Shorten, H. Nishio, and W. T. Ng, "An intergrated DC-DC converter with digital one-step dead-time correction," in Proc. IEEE International Symposium on Power Semiconductor Devices & IC's, 2010, pp. 57-60.
    [6] A. Zhao, A. A. Fomani, and W. T. Ng, "One-step digital dead-time correction for DC-DC converters," in Proc. IEEE Applied Power Electronics Conference and Exposition, 2010, pp. 132-137.
    [7] T. Takayama and D. Maksimovic, "A power stage optimization method for monolithic DC-DC converters," in Proc. IEEE Power Electronics Specialists Conference, 2006, pp. 1-7.
    [8] Analog Device. AD7822 [Online]. Available: http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7822/products/product.html
    [9] J. Xiao, A. V. Peterchev, J. Zhang, and S. R. Sanders , "A 4-µA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications," IEEE J. Solid-State Circuits, vol. 39, pp. 2342-2348, Dec. 2004.
    [10] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in Proc. IEEE Workshop on Computers in Power Electronics, 2002, pp. 18-22.
    [11] C.-W. Leng, C.-H. Yang, and C.-H. Tsai, "An integrated GUI design tool for digitally controlled switching DC-DC converter," in Proc. IEEE International Conference on Communications, Circuits and Systems, 2008, pp. 1324-1327.
    [12] 劉俊男, "數位控制切換式直流-直流轉換器之補償器研究及人機介面設計工具開發," 國立成功大學電機工程學系碩士論文, 2011.
    [13] C.-H. Yang, C.-N. Liu, and C.-H. Tsai, "Direct digital compensator design for switching converters," in Proc. IEEE International Symposium on Next-Generation Electronics, 2010, pp. 143-146.
    [14] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital PWM controller IC for DC-DC converters," IEEE Trans. Power Electronics, vol. 18, pp. 438-446, Jan. 2003.
    [15] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, "Digital pulse width modulator architectures," in Proc. IEEE Power Electronics Specialists Conference, 2004, pp. 4689-4695.
    [16] O. Trescases, G. Wei, and W. T. Ng, "A Segmented Digital Pulse Width Modulator with Self-Calibration for Low-Power SMPS," in Proc. IEEE Conference on Electron Devices and Solid-State Circuits, 2005, pp. 367-370.
    [17] A. V. Peterchev, J. Xiao, and S. R. Sanders, "Architecture and IC implementation of a digital VRM controller," IEEE Trans. Power Electronics, vol. 18, pp. 356-364, Jan. 2003.
    [18] J. Xiao, A. V. Peterchev, and S. R. Sanders, "Architecture and IC implementation of a digital VRM controller," in Proc. IEEE Power Electronics Specialists Conference, 2001, pp. 38-47.
    [19] W. Yan, C. Pi, W. Li, and R. Liu, "Dynamic dead-time controller for synchronous buck DC-DC converters," Electronics Letters, vol. 46, pp. 164-165, Jan. 2010.
    [20] H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, "Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications," IEEE J. Solid-State Circuits, vol. 42, pp. 2451-2465, Nov. 2007.
    [21] S. Lee, S. Jung, J. Huh, C. Park, C.-T. Rim, G.-H. Cho, "Robust and efficient synchronous buck converter with near-optimal dead-time control," in Proc. IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2011, pp. 392-394.
    [22] H.-W. Huang, C.-Y. Hsieh, K.-H. Chen, and S.-Y. Kuo, "Load Dependent Dead-Times Controller Based on Minimized Duty Cycle Technique for DC-DC Buck Converters," in Proc. IEEE Power Electronics Specialists Conference, 2007, pp. 2037-2041.
    [23] Linear Technology. Versatile Controller Simplifies High Voltage DC/DC Converter Designs [Online]. Available: http://cds.linear.com/docs/LT%20Magazine/2005_09-10-LT3724-Sheehan.pdf
    [24] Texas Instruments. TPS62675 [Online]. Available: http://www.ti.com/product/tps62675
    [25] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Trans. Power Electronics, vol. 18, pp. 301-308, Jan. 2003.
    [26] National Semiconductor. PCB Layout Considerations for Switchers [Online]. Available: http://www.national.com/AU/design/0,4706,0_74_,00.html
    [27] Vishay Siliconix datasheet, "SI2300DS: N-Channel 30-V (D-S) MOSFET," 2010.
    [28] Vishay Siliconix datasheet, datasheet, "MCP14700," 2010.
    [29] Altera EP2C20F484C8 [Online]. Available: http://octopart.com/ep2c20f484c8-altera-462406
    [30] O. Trescases, W. T. Ng, and S. Chen, "Precision gate drive timing in a zero-voltage-switching DC-DC converter," in Proc. IEEE International Symposium on Power Semiconductor Devices and ICs, 2004, pp. 55-58.
    [31] Vishay Siliconix Si4724 [Online]. Available: http://www.vishay.com/power-ics/list/product-71863/
    [32] Vishay Siliconix sic714cd [Online]. Available: http://www.vishay.com/docs/73569/sic714cd.pdf
    [33] Vishay Siliconix sic734cd [Online]. Available: http://www.vishay.com/docs/73672/sic734cd.pdf
    [34] Vishay Siliconix sic762cd [Online]. Available: http://tw.mouser.com/ProductDetail/Vishay-Siliconix/SIC762CD-T1-GE3/?qs=vyminXp64R1QJQh/M66xxojv2/C0bXms
    [35] Vishay Siliconix SiC769CD [Online]. Available: http://www.vishay.com/power-ics/list/product-64981/
    [36] Vishay Siliconix SiC779 [Online]. Available: http://www.vishay.com/power-ics/list/product-67538/
    [37] Analog Device. ADP1877 [Online]. Available: http://www.analog.com/en/power-management/switching-controllers-external-switches/adp1877/products/product.html?ref=ASC-PR-328
    [38] Intersil ZL1505 [Online]. Available: http://www.intersil.com/en/products/power-management/mosfet-drivers/synchronous-drivers-for-multiphase-pwm/ZL1505.html
    [39] Z. Lukic, N. Rahman, and A. Prodic, "Multibit Σ-Δ PWM Digital Controller IC for DC-DC Converters Operating at Switching Frequencies Beyond 10 MHz," IEEE Trans. Power Electronics, vol. 22, pp. 1693-1707, Sep. 2007.
    [40] H.-S. Chen, C.-H. Yang, and C.-H. Tsai, "Design and Implementation of Window Delay-Line ADC for Low-Power DC-DC SMPS," accepted for Proc. IEEE Workshop on Control and Modeling for Power Electronics, 2012.

    無法下載圖示 校內:2017-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE