| 研究生: |
林起賢 Lin, Chi-Hsien |
|---|---|
| 論文名稱: |
不同斷面形式農田灌溉渠道之效益分析-以挖子圳幹線強化工程為例 Benefit Analysis of Different Cross-Section Designs of the Farmland Irrigation Canal: A Case Study of the Reinforcement Project for the Wazi Canal Main Line |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | HEC-RAS 、農業灌溉 、渠道分析 |
| 外文關鍵詞: | HEC-RAS, Agricultural irrigation, Channel analysis |
| 相關次數: | 點閱:23 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以彰化縣溪湖地區的挖子圳幹線強化工程為例,旨在探討不同斷面形式對農田灌溉渠道流量的效益影響。研究的斷面形式包括矩形、半圓形、梯形(側坡角60度)以及梯形(側坡角45度),透過比較這些斷面的水理特性與經濟效益,為渠道設計提供優化建議。
研究採用美國陸軍工程兵團開發的水理模型軟體HEC-RAS,進行一維定量流模擬分析。研究方法基於挖子圳幹線的原始矩形斷面設計,在相同斷面積(5.36平方公尺)與設計流量(0.66 CMS)的基礎上,額外設計了三種理論上更具水理效益的斷面進行比較,包含:半圓形、梯形(側坡角60度)及梯形(側坡角45度)。模擬中考慮了渠道沿線的坡度變化,以及一段因施工限制而未改善的舊有渠段所造成的影響。
研究結果顯示,水理穩定性部分在半圓形與兩種梯形斷面在行經未改善的渠段時,水面線與流速變化較為平穩。反觀原設計的矩形斷面,在遭遇斷面急遽變化的區段時,會產生明顯的水位下降與流速增加,穩定性較差;能量損失部分,四種斷面方案的總能量損失差異不大,矩形損失最大(0.72公尺),以半圓形及側坡角45度的梯形斷面損失最小(0.68公尺),水理效率最佳;工程經濟性部分,在不考慮特殊工法的前提下,梯形斷面展現了顯著的成本優勢;整體評估下,建議選擇編號3(梯形60度)斷面,因為其與編號1(矩形)相比,減少能量損失0.02公尺及減少每進行公尺材料費用3,741元,能兼顧水理穩定性、能量損失及成本經濟性。
This study evaluates the benefits of different cross-section designs for farmland irrigation canals, using the Wazi Canal reinforcement project in Changhua County, Taiwan, as a case study. The primary objective is to optimize channel design by comparing the hydraulic characteristics and economic efficiency of four cross-section shapes: rectangular, semi-circular, and two trapezoidal forms (with 60° and 45° side slopes, respectively). The analysis was conducted using the HEC-RAS hydraulic modeling software to simulate one-dimensional steady flow. The findings indicate that while the semi-circular and 45° trapezoidal sections offer the highest hydraulic efficiency in terms of minimal energy loss, the 60° trapezoidal section provides the most significant economic advantage regarding material costs. The original rectangular design was found to be the least stable when encountering abrupt changes in the channel. This research concludes that the 60° trapezoidal cross-section presents the most balanced solution, combining cost-effectiveness with reliable hydraulic performance for irrigation channel improvement projects.
1.US Army Corps of Engineers, Hydrologic Engineering Center. (2025). HEC-RAS Hydraulic Reference Manual (Version 6.7_Beta2).
2.Lee, M., Yu, C.-Y., Chiang, P.-C., & Hou, C.-H. (2018). Water-Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan. Water, 10(11), 1740.
3.Han, X., Wang, X., Zhu, Y., Huang, J., Yang, L., Chang, Z., & Fu, F. (2020). An Experimental Study on Concrete and Geomembrane Lining Effects on Canal Seepage in Arid Agricultural Areas. Water, 12(8), 2294.
4.Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill.
5.Abdulrahman, A. (2007). Best hydraulic section of a composite channel. Journal of Hydraulic Engineering, 133(6), 695–697.
6.Zahran, S., Gooda, E. A., AbdelMeged, N. (2024), “Modeling Al‑Qaraqoul canal before and after rehabilitation using HEC‑RAS,” Springer Nature.
7.Ashour, M. A., Abueleyon, H. M., Ali, M. K., Abdou, A. A., & Abu-Zaid, T. S. (2024). Numerical Simulation for the Desired Compatibility between the Inside Slopes of Open Irrigation Canals, and the Used Type of Wing Walls for the Most Efficient Performance of Water Structures. Limnological Review, 24, 192–204.
8.Serede, I. J., Mutua, B. M., & Raude, J. M. (2015). Calibration of Channel Roughness Coefficient for Thiba Main Canal Reach in Mwea Irrigation Scheme, Kenya. Hydrology, 3(6), 55-65.
9.Haghizadeh, A., Shui, L. T., Mirzaei, M., & Memarian, H. (2012). Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin. Journal of Water Resource and Protection, 4, 25-31.
10.Zeleňáková, M., Arifjanov, A., Abd-Elhamid, H. F., Gergeľová, M. B., Fatxulloyev, A., & Allayorov, D. (2025). The Effect of Lining Hydraulic Properties on the Efficiency and Cost of Irrigation Canal Reconstruction. Water Resources Management.
11.Arif, M. I., Legono, D., & Luknanto, D. (2021). Study on the Performance of the Hydraulics System Planning of Swampy Irrigation Area of Dadahup, Kapuas District, Central Kalimantan Province. IOP Conference Series: Earth and Environmental Science, 930, 012049.
12.Syarifudin, A., Satyanaga, A., & Destania, H. R. (2022). Application of the HEC-RAS Program in the Simulation of the Streamflow Hydrograph for Air Lakitan Watershed. Water, 14(24), 4094.
13.經濟部水利署(2023)。水文年報。
14.鄭友誠(2016),氣候變遷下農業灌溉水資源調適因應策略,農政與農情期刊,第285期。
15.行政院主計總處綜合統計處(2023),111年行政區農產產值統計_縣市。
16.甘俊二、林國華(1992),嘉南大圳灌溉渠道輸水損失合理性之探討,八十一年度農業用水管理研討會論文集,367-378頁,桃園平鎮,1992。
17.行政院農業委員會(2020),灌溉工程學。
18.陳意昌, 張俊斌, 林信輝, & 孫明德. (2001). 不同材質灌溉排水渠道之研究. 水土保持學報, 33(2), 67–80.
19.交通部(2018),公路排水設計規範。
20.水保局(2023),水土保持技術規範。
21.內政部(2024),市區道路及附屬工程設計規範。
22.內政部(2015),農地重劃農水路規劃設計規範。
23.謝平城 (2021)。渠道水力學 (四版)。五南圖書出版股份有限公司。
24.陳瑞燦(2006),河溪生態工法融入小學環境教育議題之研究-以舊濁水溪為例,中興大學環境工程學系碩士學位論文。
25.黃葆貴,溪湖鎮的冬季蔬菜,臺中區農業專訊,14-8。
26.行政院農業委員會(2019),農田排水工程規劃設計原則參考手冊。
27.農業部農田水利署彰化管理處(2023),挖子圳幹線強化工程設計報告。
28.陳豐文, 林修德, 陳宗益, 藍士呈, & 蔡瀚陞. (2012). 應用 HEC-RAS 一維水理模式評估渠首工構造物之淹水潛勢-以臺中水系灌區為例. 中華水土保持學會年會及學術研討會論文集。
29.農業部農田水利署彰化管理處(2023),挖子圳幹線強化工程設計圖。