| 研究生: |
楊峻泓 Yang, Chun-Hung |
|---|---|
| 論文名稱: |
數位切換式直流-直流轉換器之控制器設計與實作 Controller Design and Implementation for Digital Switching DC-DC Converters |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 數位控制器 、數位脈波寬度調變 、多模式控制 、電磁干擾 、單電感雙輸出 |
| 外文關鍵詞: | Digital controller, digital pulse-width modulator (DPWM), multi-mode, electromagnetic interference (EMI), single-inductor dual-output (SIDO) |
| 相關次數: | 點閱:147 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,低功率電池電源系統,如數位相機與智慧型手機,已逐漸由數位控制器取代類比電源控制系統。相較於類比控制,數位控制具有不易受參數變異影響、可用成熟之數位設計EDA工具加速設計時間、能完成複雜的控制機制與易整合於先進製程等優點。
為了探索數位控制切換式電源轉換器研究主題,從學界最新的研究發表與業界產品之技術走向觀察,本論文提出三個數位電源控制系統。第一,因電子產品的電磁干擾 (EMI)來源多半來自交換式電源供應迴路。本論文於切換式降壓型轉換器系統,結合亂數脈波起始位置調變與脈波寬度調變兩種技術,可同時降低傳導性電磁干擾並獲得快速暫態響應。
第二個研究議題著重在改善切換式電源轉換器寬負載範圍之轉換效率。本論文設計一無電流感測之多模式數位控制切換式降壓轉換器,重載時操作於脈波寬度調變模式、輕載時操作於脈波頻率調變模式與極輕至極重載轉態時操作於快速響應模式。
最後,單電感多輸出切換式電源轉換器已成為新興顯學,其可提供多組電源電壓且減少外掛元件、印刷電路板面積與產品成本等優點。本論文設計與實作一低互穩壓之數位控制單電感雙輸出電源轉換器,包含修改式數位脈波寬度調變與單一查表法。
In low-power battery-operated systems, such as digital cameras and smart-phones, digital controllers have been recently emerged as alternatives to the predominately-used analog systems. This is mostly due to its superior design immunity to noise and parameter variations, faster design process with the help of digital EDA tools, easier implementation of complex control algorithms, and easier scaling and integration with advanced fabrication technologies.
In addition to exploration of topics for digitally controlled switching converters, we present three digital controllers and systems in this dissertation. The first topic deals with the reduction of conductive electromagnetic interference (EMI) spectra for switching PWM converters. The main contribution of this part is the use of a combined random pulse position modulation (RPPM)/ digital pulse-width modulator (DPWM) digital controller for a switching buck converter to simultaneously achieve low conductive EMI and a fast transient response.
The second topic is dedicated to achieving high efficiency over a wide load range. This dissertation presents a multimode digitally controlled buck converter with automatic PWM/PFM (pulse frequency modulation) mode switching without current sensor. Moreover, a third mode, fast-transient mode, is also included.
Finally, to provide multiple supply voltages and to reduce the number of external components, printed circuit board (PCB) area and production cost, a single-inductor multiple-output (SIMO) switching converter is also investigated. A digitally-controlled single-inductor dual-output (SIDO) converter with low cross-regulation is also presented in this dissertation.
[1] K. Zhang, W. Li, and R. Liu, "A low-dropout voltage regulator with active current amplifier frequency compensation," International Journal of Circuit Theory and Applications, vol. 39, no. 4, pp. 373-383, Apr. 2011.
[2] C.-H. Tsai and J.-H. Wang, "Capacitor-less low-dropout regulator with slew-rate-enhanced circuit," IET Circuits, Devices & Systems, vol. 5, no. 5, pp. 384-391, Sep. 2011.
[3] M. Hammes, C. Kranz, D. Seippel, J. Kissing, and A. Leyk, "Evolution on SoC integration: GSM baseband-radio in 0.13um CMOS extended by fully integrated power management unit," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 236-245, Jan. 2008.
[4] Y.-H. Lee, Y.-Y. Yang, K.-H. Chen, Y.-H. Lin, S.-J. Wang, K.-L. Zheng, P.-F. Chen, C.-Y. Hsieh, Y.-Z. Ke, Y.-K. Chen, and C.-C. Huang, "A DVS embedded power management for high efficiency integrated SoC in UWB system," IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2227-2238, Nov. 2010.
[5] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital PWM controller IC for DC-DC converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438-446, Jan. 2003.
[6] L. Corradini, P. Mattavelli, E. Tedeschi, and D. Trevisan, "High-bandwidth multisampled digitally controlled DC-DC converters using ripple compensation," IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1501-1508, Apr. 2008.
[7] Y.-F. Liu, E. Meyer, and X. Liu, "Recent developments in digital control strategies for DC/DC switching power converters," IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2567-2577, Nov. 2009.
[8] Z. Xu and D. Maksimovic, "Multimode Digital Controller for Synchronous Buck Converters Operating Over Wide Ranges of Input Voltages and Load Currents," IEEE Trans. Power Electronics, vol. 25, no. 8, pp. 1958-1965, 2010.
[9] O. Trescases, Prodic, x, A., and N. Wai Tung, "Digitally controlled current-mode DC-DC converter IC," IEEE Trans. Circuits and Systems. I, Reg. Papers, vol. 58, no. 1, pp. 219-231, Jan. 2011.
[10] Y.-C. Lin, D. Chen, Y.-T. Wang, and W.-H. Chang, "A novel loop gain-adjusting application using LSB tuning for digitally controlled DC-DC power converters," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 904-911, Feb. 2012.
[11] C.-A. Yeh and Y.-S. Lai, "Digital pulsewidth modulation technique for a synchronous buck DC/DC converter to reduce switching frequency," IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 550-561, Jan. 2012.
[12] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, "Modeling of quantization effects in digitally controlled DC-DC converters," IEEE Trans. Power Electron., vol. 22, no. 1, pp. 208-215, Jan. 2007.
[13] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, "Digital pulse width modulator architectures," in Proc. IEEE Power Electron. Spec. Conf., 2004, pp. 4689-4695.
[14] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 301-308, Jan. 2003.
[15] R. Foley, R. Kavanagh, W. Marnane, and M. Egan, "Multiphase digital pulsewidth modulator," IEEE Trans. Power Electron., vol. 21, no. 3, pp. 842-846, May 2006.
[16] Z. Lukic, N. Rahman, and A. Prodic, "Multibit Σ–∆ PWM digital controller IC for DC-DC converters operating at switching frequencies beyond 10 MHz," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1693-1707, Sep. 2007.
[17] T. Carosa, R. Zane, and D. Maksimovic, "Scalable digital multiphase modulator," IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2201-2205, Jul. 2008.
[18] F. Guang, E. Meyer, and L. Yan-Fei, "A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters," IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1489-1498, Jul. 2007.
[19] Z. Zhenyu and A. Prodic, "Continuous-time digital controller for high-frequency DC-DC converters," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 564-573, Mar. 2008.
[20] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alarcon, L. Pao, and D. Maksimovic, "Proximate time-optimal digital control for synchronous buck DC-DC converters," IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2018-2026, Jul. 2008.
[21] R. Redl and S. Jian, "Ripple-based control of switching regulators-an overview," IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[22] S. Jian, "Characterization and performance comparison of ripple-based control for voltage regulator modules," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346-353, Mar. 2006.
[23] C. Kuang-Yao, Y. Feng, F. C. Lee, and P. Mattavelli, "Digital enhanced V2-type constant on-time control using inductor current ramp estimation for a buck converter with low-ESR capacitors," IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1241-1252, Mar. 2013.
[24] L. Feng and D. Y. Chen, "Reduction of power supply EMI emission by switching frequency modulation," IEEE Trans. Power Electron., vol. 9, no. 1, pp. 132-137, 1994.
[25] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronicsn,, 2nd ed. Boston: MA: Kluwer, 2001.
[26] K. K. Tse, H. S. H. Chung, S. Y. R. Hui, and H. C. So, "A comparative investigation on the use of random modulation schemes for DC/DC converters," IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 253-263, Apr. 2000.
[27] F. Mihalic and D. Kos, "Reduced conductive EMI in switched-mode DC-DC power converters without EMI filters: PWM versus randomized PWM," IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1783-1794, Nov. 2006.
[28] V. Adrian, J. S. Chang, and G. Bah-Hwee, "A randomized wrapped-around pulse position modulation scheme for DC-DC converters," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 57, no. 9, pp. 2320-2333, Sep. 2010.
[29] T. Daimon, H. Sadamura, T. Shindou, H. Kobayashi, M. Kono, T. Myono, T. Suzuki, S. Kawai, and T. Iijima, "Spread-spectrum clocking in switching regulators for EMI reduction," IEICE Trans. Fundamentals, vol. E86-A, no. 2, pp. 381-386, 2003.
[30] M. Kuisma, "Variable frequency switching in power supply EMI-control: an overview," IEEE Aerospace and Electronic Systems Magazine, vol. 18, no. 12, pp. 18-22, Dec. 2003.
[31] J. Balcells, A. Santolaria, A. Orlandi, D. Gonzalez, and J. Gago, "EMI reduction in switched power converters using frequency modulation techniques," IEEE Trans. Electromagnetic Compatibility, vol. 47, no. 3, pp. 569-576, Aug. 2005.
[32] V. Adrian, J. S. Chang, and B. H. Gwee, "A Randomized Wrapped-Around Pulse Position Modulation Scheme for DC-DC Converters," IEEE Trans. Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp. 1-1, 2010.
[33] D. Trevisan, P. Mattavelli, M. Zigliotto, and S. Saggini, "Limited-pool random carrier-frequency PWM for digitally controlled DC-DC converters," in Proc. IEEE Industrial Electron. Conf., 2006, pp. 4929-4934.
[34] G. M. Dousoky, M. Shoyama, and T. Ninomiya, "FPGA-based spread-spectrum schemes for conducted-noise mitigation in DC–DC power converters: design, implementation, and experimental investigation," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 429-435, Feb. 2011.
[35] O. Trescases, G. Wei, A. Prodic, and W. T. Ng, "An EMI reduction technique for digitally controlled SMPS," IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1560-1565, Jul. 2007.
[36] J.-C. Tsai, T.-Y. Huang, W.-W. Lai, and K.-H. Chen, "Dual modulation technique for high efficiency in high-switching buck converters over a wide load range," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1671-1680, Jul. 2011.
[37] B. Sahu and G. A. Rincon-Mora, "An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control," IEEE Trans. Circuits and Systems. I, Reg. Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[38] H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, "Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications," IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2451-2465, Nov. 2007.
[39] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, "A monolithic current-mode buck converter with advanced control and protection circuits," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1836-1846, Sep. 2007.
[40] W.-R. Liou, M.-L. Yeh, and Y.-L. Kuo, "A high efficiency dual-mode buck converter IC for portable applications," IEEE Trans. Power Electron., vol. 23, no. 2, pp. 667-677, Mar. 2008.
[41] X. Jinwen, A. V. Peterchev, Z. Jianhui, and S. R. Sanders, "A 4-mA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications," IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342-2348, Dec. 2004.
[42] S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, "20 mA to 100 mA DC-DC converter with 2.8-4.2 V battery supply for portable applications in 45 nm CMOS," IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2807-2820, Dec. 2011.
[43] H. C. Foong, Y. Zheng, Y. K. Tan, and M. T. Tan, "Fast-transient integrated digital DC-DC converter with predictive and feedforward control," IEEE Trans. Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1567-1576, Jul. 2012.
[44] S. Cliquennois, A. Donida, P. Malcovati, A. Baschirotto, and A. Nagari, "A 65-nm, 1-A buck converter with multi-function SAR-ADC-based CCM/PSK digital control loop," IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1546-1556, Jul. 2012.
[45] X. Zhang and D. Maksimovic, "Multimode digital controller for synchronous buck converters operating over wide ranges of input voltages and load currents," IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1958-1965, Aug. 2010.
[46] A. V. Peterchev and S. R. Sanders, "Digital multimode buck converter control with loss-minimizing synchronous rectifier adaptation," IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1588-1599, Nov. 2006.
[47] P.-H. Lan, T.-J. Yang, and P.-C. Huang, "A high-efficiency, wide workload range, digital off-time modulation (DOTM) DC-DC converter with asynchronous power saving technique," accepted to be published in IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2011.
[48] D. Trevisan, P. Mattavelli, and P. Tenti, "Digital control of single-inductor multiple-output step-down DC-DC converters in CCM," IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3476-3483, Sep. 2008.
[49] A. Pizzutelli and M. Ghioni, "Novel control technique for single inductor multiple output converters operating in CCM with reduced cross-regulation," in Proc. IEEE Appl. Power Electron. Conf., 2008, pp. 1502-1507.
[50] Y. Yang, L. Sun, and X. Wu, "A single-inductor dual-output buck converter with self-adapted PCCM method," in Proc. IEEE Int. Conf. Electron Devices and Solid-State Circuits, 2009, pp. 87-90.
[51] Z. Moussaoui, Q. Jifeng, and G. Miller, "Single inductor dual output DC-DC converter for space-limited or large input voltage variation systems," in Proc. IEEE Computers in Power Electron. Conf., 2010, pp. 1-4.
[52] X. Weiwei, L. Ye, G. Xiaohan, H. Zhiliang, and D. Killat, "A dual-mode single-inductor dual-output switching converter with small ripple," IEEE Trans. Power Electron., vol. 25, no. 3, pp. 614-623, Mar. 2010.
[53] C.-S. Huang, D. Chen, C.-J. Chen, and K.-H. Liu, "Mix-voltage conversion for single-inductor dual-output buck converters," IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2106-2114, Aug. 2010.
[54] X. Liu, J. Xu, Z. Lu, and J. Wang, "A single-inductor dual-output buck converter with voltage mode pulse-train control," in Proc. IEEE Int. Conf. Communications, Circuits and Systems, 2010, pp. 561-564.
[55] D. Ma, W.-H. Ki, C.-Y. Tsui, and P. K. T. Mok, "Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode," IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003.
[56] D. Ma, W.-H. Ki, and C.-Y. Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun. 2003.
[57] H. Siew Kuok, N. Culp, C. Jun, and F. Maloberti, "A PWM dual-output DC/DC boost converter in a 0.13μm CMOS technology for cellularphone backlight application," in Proc. IEEE European Solid-State Circuits Conf., 2005, pp. 81-84.
[58] J. Xiaocheng, P. Mok, and L. Ming Chak, "A wide-load-range single-inductor-dual-output boost regulator with minimized cross-regulation by constant-charge-auto-hopping (CCAH) control," in Proc. Custom Integrated Circuits Conf., 2009, pp. 299-302.
[59] A. Parayandeh, A. Stupar, and A. Prodic, "Programmable digital controller for multi-output DC-DC converters with a time-shared inductor," in Proc. IEEE Power Electron. Spec. Conf., 2006, pp. 1-6.
[60] S.-C. Koon, Y.-H. Lam, and W.-H. Ki, "Integrated charge-control single-inductor dual-output step-up/step-down converter," in Proc. IEEE Int. Symp. Circuits and Systems, 2005, pp. 3071-3074.
[61] A. Sharma and Y. S. Pavan, "A single inductor multiple output converter with adaptive delta current mode control," in Proc. IEEE Int. Symp. Circuits and Systems, 2006, pp. 5643-5646.
[62] M.-H. Huang and K.-H. Chen, "Single-inductor dual-output (SIDO) DC–DC converters for minimized cross regulation and high efficiency in SOC supplying systems," Analog Integrated Circuits and Signal Processing, vol. 60, no. 1, pp. 93-103, Aug. 2009.
[63] M.-H. Huang, Y.-N. Tsai, and K.-H. Chen, "Sub-1 V input single-inductor dual-output (SIDO) DC-DC converter with adaptive load-tracking control (ALTC) for single-cell-powered systems," IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1713-1724, Jul. 2010.
[64] M.-H. Huang and K.-H. Chen, "Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, Apr. 2009.
[65] K. Dongwon and G. A. Rincon-Mora, "Single-inductor-multiple-output switching DC-DC converters," IEEE Trans. Circuits and Systems II, Exp. Briefs, vol. 56, no. 8, pp. 614-618, Aug. 2009.
[66] H. Siew Kuok, N. Culp, C. Jun, and F. Maloberti, "A PWM dual-output DC/DC boost converter in a 0.13um CMOS technology for cellularphone backlight application," in Proc. IEEE European Solid-State Circuits Conf., 2005, pp. 81-84.
[67] C.-W. Leng, C.-H. Yang, and C.-H. Tsai, "Digital PWM controller for SIDO switching converter with time-multiplexing scheme," in Proc. IEEE Int. Symp. VLSI Design, Automation and Test, 2009, pp. 52-55.
[68] E. Bayer and G. Thiele, "A single-inductor multiple-output converter with peak current state-machine control," in Proc. IEEE Appl. Power Electron. Conf., 2006, pp. 153-159.
[69] A. Parayandeh and A. Prodic, "Programmable analog-to-digital converter for low-power DC-DC SMPS," IEEE Trans. Power Electron., vol. 23, no. 1, pp. 500-505, Jan. 2008.
[70] G. Kennedy and K. Rinne, "A programmable bandgap voltage reference CMOS ASIC for switching power converter integrated digital controllers," in Proc. IEEE Power Electron. Spec. Conf., 2005, pp. 523-529.
[71] TI Datasheet, "UCD9240: Digital Point of Load System Controller," 2008.
[72] Intersil Datasheet, "ZL6100: Adaptive Digital DC/DC Controller with Drivers and Current Sharing," 2010.
[73] L. T. Jakobsen and M. A. E. Andersen, "Digitally controlled envelope tracking power supply for an RF power amplifier," in Proc. IEEE Int. Telecommunications Energy Conference, 2007, pp. 636-642.
[74] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," in Proc. IEEE Computers in Power Electron. Conf., 2002, pp. 18-22.
[75] A. Syed, E. Ahmed, and D. Maksimovic, "Digital PWM controller with feed-forward compensation," in Proc. IEEE Appl. Power Electron. Conf., 2004, pp. 60-66.
[76] P. Zumel, C. Fernandez, A. Lazaro, and A. Barrado, "Digital compensator design for DC-DC converters based on FPGA: an educational approach," in Proc. IEEE Industrial Electron. Conf., 2006, pp. 5439-5444.
[77] Y. Liangbin, J. A. Abu-Qahouq, and I. Batarseh, "Hybrid discretization in power converters' digital controller design," in Proc. IEEE Int. Symp. Circuits and Systems, 2006, pp. 823-826.
[78] C.-H. Chen, W.-H. Chang, C. Dan, L.-P. Tai, and C.-C. Wang, "Modeling of digitally-controlled voltage-mode DC-DC converters," in Proc. IEEE Industrial Electron. Conf., 2007, pp. 2005-2009.
[79] T.-H. Hsia, H.-Y. Tsai, Y.-Z. Lin, C. Dan, and W.-H. Chang, "Digital compensation of a high-frequency voltage - mode DC-DC converter," in Proc. European Conf. Power Electronics and Applications, 2007, pp. 1-8.
[80] A. Hande and S. Kamalasadan, "System modeling and design considerations for point-of-load digital power supplies," in Proc. IEEE Industrial Electron. Conf., 2008, pp. 1004-1009.
[81] S. Abe, M. Ogawa, M. Shoyama, T. Zaitsu, S. Obata, and T. Ninomiya, "Dynamic characteristics of digitally controled conveter with pole-zero-cancellation techique," in Proc. IEEE Int. Technical Conf., 2010, pp. 25-30.
[82] W. Gu-Yeon and M. Horowitz, "A low power switching power supply for self-clocked systems," in Proc. IEEE Symp. Low Power Electronics and Design, 1996, pp. 313-317.
[83] M. Scharrer, M. Halton, T. Scanlan, and K. Rinne, "FPGA-based multi-phase digital pulse width modulator with dual-edge modulation," in Proc. IEEE Appl. Power Electron. Conf., 2010, pp. 1075-1080.
[84] A. V. Peterchev, X. Jinwen, and S. R. Sanders, "Architecture and IC implementation of a Digital VRM controller," IEEE Trans. Power Electron., vol. 18, no. 1, pp. 356-364, Jan. 2003.
[85] V. Yousefzadeh, T. Takayama, and D. Maksimovi, "Hybrid DPWM with digital delay-locked loop," in Proc. IEEE Computers in Power Electron. Conf., 2006, pp. 142-148.
[86] H. Haitao, V. Yousefzadeh, and D. Maksimovic, "Nonuniform A/D quantization for improved dynamic responses of digitally controlled DC-DC converters," IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1998-2005, Jul. 2008.
[87] M. Barai, S. Sengupta, and J. Biswas, "Digital controller for DVS-enabled DC-DC converter," IEEE Trans. Power Electron., vol. 25, no. 3, pp. 557-573, Mar. 2010.
[88] A. Gelb and W. E. V. Velde, Multiple-input describing functions and nonlinear system design. New York: McGraw-Hill, 1968.
[89] J.-J. Slotine and W. Li, Applied Nonlinear Control: Prentice Hall, 1991.
[90] C. Schwartz and R. Gran, "Describing function analysis using MATLAB and simulink," IEEE Control Systems Magazine, vol. 21, no. 4, pp. 19-26, Aug. 2001.
[91] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed.: Prentice Hall, 1997.
[92] S. Jiang, J. Liang, Y. Liu, K. Yamazaki, and M. Fujishima, "Modeling and cosimulation of FPGA-based SVPWM control for PMSM," in Proc. IEEE Industrial Electron. Conf., 2005, pp. 1538-1543.
[93] V. Boscaino, G. Capponi, G. M. Di Blasi, P. Livreri, and F. Marino, "Modeling and simulation of a digital control design approach for power supply systems," in Proc. Computers in Power Electronics Conf., 2006, pp. 246-249.
[94] J. Katrib, P. Poure, S. Karimi, and S. Saadate, "Design methodology of VLSI power electronics digital controller based on Matlab-Modelsim co-simulation," in Proc. IEEE Int. Symp. Industrial Electron., 2008, pp. 1751-1756.
[95] Y. Shrivastava, S. Y. Hui, S. Sathiakumar, H. Chung, and K. K. Tse, "Harmonic analysis of nondeterministic switching methods for DC-DC power converters," IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 6, pp. 868-884, Jun. 2000.
[96] R. F. Foley, R. C. Kavanagh, W. P. Marnane, and M. G. Egan, "An area-efficient digital pulsewidth modulation architecture suitable for FPGA implementation," in Proc. IEEE Appl. Power Electron. Conf., 2005, pp. 1412-1418.
[97] D. Kagaris, "Linear dependencies in extended LFSMs," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 7, pp. 852-859, Jul. 2002.
[98] J.-C. Wu, C.-W. Mu, C.-H. Yang, and C.-H. Tsai, "Digitally controlled low-EMI switching converter with random pulse position modulation," in Proc. IEEE Asian Solid-State Circuits Conf., 2009, pp. 341-344.
[99] C.-W. Leng, C.-H. Yang, and C.-H. Tsai, "An integrated GUI design tool for digitally controlled switching DC-DC converter," in Proc. IEEE Int. Conf. Communications, Circuits and Systems, 2008, pp. 1324-1327.
[100] C. R. Paul, Introduction to Electromagnetic Compatibility,, 2nd ed.: John Wiley & Sons, 2006.
[101] Z. Xunwei, M. Donati, L. Amoroso, and F. C. Lee, "Improved light-load efficiency for synchronous rectifier voltage regulator module," IEEE Trans. Power Electron., vol. 15, no. 5, pp. 826-834, Sep. 2000.
[102] J. Alico and A. Prodic, "Multiphase optimal response mixed-signal current-programmed mode controller," in Proc. IEEE Appl. Power Electron. Conf., 2010, pp. 1113-1118.
[103] R. Nabeel, W. Kun, and A. Prodic, "Digital pulse-frequency/pulse-amplitude modulator for improving efficiency of SMPS operating under light loads," in Proc. IEEE Computers in Power Electron. Conf., 2006, pp. 149-153.
[104] V. Yousefzadeh and D. Maksimovic, "Sensorless optimization of dead times in DC-DC converters with synchronous rectifiers," IEEE Trans. Power Electron., vol. 21, no. 4, pp. 994-1002, Jul. 2006.
[105] B. Arbetter, R. Erickson, and D. Maksimovic, "DC-DC converter design for battery-operated systems," in Proc. IEEE Power Electron. Spec. Conf., 1995, pp. 103-109.
[106] Z. Siyuan and G. A. Rincon-Mora, "A high efficiency, soft switching DC-DC converter with adaptive current-ripple control for portable applications," IEEE Trans. Circuits and Systems II, Exp. Briefs, vol. 53, no. 4, pp. 319-323, Apr. 2006.
[107] C. F. Lee and P. K. T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[108] C.-H. Yang, J.-H. Shiau, and C.-H. Tsai, "Programmable reference for power-aware DVS," in Proc. IEEE Int. Symp. Aware Computing, 2010, pp. 166-170.
[109] Y.-T. Chang and Y.-S. Lai, "Digital controller design for buck converter with the reduction of phase transition and output voltage oscillation under transient state," in Proc. IEEE Power Electronics, Machines and Drives, 2008, pp. 376-380.
校內:2017-12-06公開