簡易檢索 / 詳目顯示

研究生: 余書振
Yu, Shu-Jenn
論文名稱: 高電子移動率電晶體之微波電路及元件應用於單晶微波積體電路之研究
Study of High Electron Mobility Transistors Microwave Circuits and Devices for MMIC Applications
指導教授: 李景松
Lee, Ching-Sung
許渭州
Hsu, Wei-Chou
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 122
中文關鍵詞: 混頻器功率放大器單晶微波積體電路高電子移動率電晶體低雜訊放大器
外文關鍵詞: low noise amplifier, power amplifier, HEMT, MMIC, mixer
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們提出以假晶式高電子移動率電晶體 (PHEMT) 元件設計的主動和被動的單晶微波積體電路 (MMICs) 新的設計電路,包括混頻器、低雜訊放大器和高功率放大器。由於傳統PHEMT 特性上的限制 ,我們提出新式通道的變晶式高電子移動率電晶體 (MHEMT) 結構,在X 頻帶之放大器應用上,有較大的小訊號增益及閘極電壓操作範圍。
    首先,為了解決高頻高輸出功率的本地振盪器不易達成,我們設計毫米波頻帶的次諧波混頻器,我們利用了反並聯式配對二極體架構,設計了降頻次諧波混頻器,在射頻頻率由26 至38 GHz 的頻段內皆有良好之射頻及本地震盪源對中頻隔離度,其隔離度在頻段內皆大於20dB,而其最小轉頻損耗為13.7dB。
    在Ku 頻帶低雜訊放大器應用上,我們設計了使用自偏壓式電路之三級低雜訊放大器,操作頻率範圍為14-18 GHz,不僅可以使用單一電源操作,同時提供溫度補償效果,有效地降低隨溫度影響的增益變化。另外在功率放大器方面,為了軍事通訊系統的需求,我們設計具有6-18 GHz 寬頻之功率放大器,為了改善增益及輸出功率的平坦度,我們提出一個新的匹配架構,使得功率放大器同時提供高的功率附加效率。此外,由我們設計的AlGaAs/InGaAs PHEMT 放大
    器可以看出在高頻操作時遭遇較小的增益的問題,由於傳統的AlGaAs/InGaAs PHEMT 均勻式通道結構,“銦"濃度較低,使得元件有較小的電壓增益,造成在放大器電路應用上,無法獲得較大的小訊號增益,而且在不同的閘極偏壓下,電壓增益的變化較大,所以為了在微波積體電路的應用上,我們在變晶式(metamorphic)高電子移動率電晶體中,設計了新式的通道結構,在擁有高增益的特性下,同時改善衝擊游離的現象、紐結效應及崩潰電壓特性。新型通道結構包含了銦組成為0.35 之的砷化銦鎵均勻式通道和銦組成為漸變式對稱式通道(0.5→0.65→0.5)的變晶式高電子移動率電晶體,由於通道有較大的平均能隙,元件的崩潰電壓皆大於15 V。同時,由對稱漸變式通道結構,可以明顯改善閘極工作電壓擺幅特性達到1.3 V
    最後,我們配合S參數量測的數據,建立元件的小訊號模型,透過軟體模擬設計具有X頻帶(9-12 GHz)操作的增益放大器。與X頻帶放大器比較下,以變晶式高電子移動率電晶體設計之放大器可證實可擁有佳的增益,另外,對稱式通道之變晶結構高電子移動率電晶體,由於改善閘極工作電壓擺幅特,在不同閘極偏壓下,亦可以獲得優異且穩定之小訊號增工作特性。

    This dissertation presents new designs of Monolithic Microwave Integrated Circuits (MMICs), including sub-harmonic mixer, low-noise amplifier, and high-power amplifier. Besides, in order to improve the device performance suitable for MMIC implementations, as compared to conventional AlGaAs/InGaAs pseudomorphic high electron mobility transistor (PHEMT), we further investigate metamorphic HEMT (MHEMT) with new channel designs. For X-band amplifier designs and simulation, the proposed circuit demonstrates improved performances of small-signal gain and gate-voltage operating range.
    First, we have designed a sub-harmonic mixer to prevent mixer for being operated at high frequency and high power oscillator. We have proposed an anti-parallel diode pair (APDP) sub-harmonic down-conversion mixer that has successfully shown minimum conversion loss of 13.7 dB and high RF/LO to IF isolations of 20 dB in Ka-band.
    Then, for the low-noise amplifier MMIC applications, the designs of a self-bias pHEMT device with compact source capacitors and resistors have been proposed. We have successfully achieved a single-supply Ku-band three-stage low noise amplifier MMIC. Thermal sensitivity coefficients for the small-signal gain and the noise figure are superiorly low to be -0.023 dB/°C and 0.003 dB/°C. Next, for military and multipurpose system applications, a 6-to-18 GHz broadband power amplifier has been designed and fabricated. With a new matched network, the proposed power amplifier has improved the flatness characteristics of small-signal gain and output power. In addition, according to our devised AlGaAs/InGaAs pHEMT amplifier, the circuits have shown low small-signal gain at high frequency application. It is because of low “In” content in conventional uniform InGaAs channel pHEMT to degrade the device characteristics. Furthermore, the devised amplifiers have also shown gain variations at different gate biases. Consequently, for MMIC application, we have proposed MHEMT designs with novel channel engineering to relieve the impact-ionization effects within the channel, and to improve the breakdown voltage and kink effects at the same time. The proposed MHEMT devices include In0.35Al0.65As uniform-channel MHEMT and InxGa1-xAs MHEMTs with a V-shaped
    symmetrically-graded InxGa1-xAs channel (x =0.5 → 0.65 → 0.5). The gate-drain breakdown voltages are improved to be higher than 15 V. Moreover, MHEMT with a symmetrically-graded channel has successfully demonstrated enhanced gate-voltage swing (GVS) of 1.3 V.
    Finally, based on the measured S-parameters, we have extracted and established the small-signal device model for the symmetrical-channel MHEMT, such that to design a gain amplifier for X-band (9 ~ 12 GHz) application. The MHEMT amplifier has shown superior small-signal gain per stage over the X-band frequency regime, as compared to other amplifiers. Due to improved GVS characteristics of the symmetrical-channel MHEMT, superior gain linearity of the studied MMIC amplifier has been successfully accomplished.

    Abstract (Chinese) ………………………………………………………………… I Abstract (English) ………………………………………………………………… III Acknowledgments V Contents …………………………………………………………………………… VII Table Captions …………………………………………………………………… IX Figure Captions …………………………………………………………………… X Chapter 1 Introduction ………………………………………………………… 1 1.1 Motivation ………………………………………………………………… 1 1.2 Organization of this Dissertation ……………………… 3 Chapter 2 Design Fundamental of Microwave circuit ………………………… 6 2.1 Mixer ……………………………………………………………………… 6 2.1.1 The Fundamentals of Mixer …………………………………… 6 2.1.2 Mixer Design Parameters ……………………………………… 7 2.1.3 Basic Categories of Mixers ……………………………………… 10 2.2 Amplifier …………………………………………………………………… 13 2.2.1 The Fundamentals of Noise …………………………………… 13 2.2.2 Noise Figure of a Cascaded System …………………………… 15 2.2.3 Load Impedance Calculation of Power Amplifier ……………… 16 2.2.4 Amplifier Design under Conditional Stability ………………… 17 2.2.5 Amplifier Parameter Definitions ………………………………… 20 2.2.6 Device Small Signal Model …………………………………… 22 Chapter 3 Millimeter-Wave Band Sub-Harmonic Mixer …………………… 32 3.1 Introduction ……………………………………………………………… 32 3.2 The Fundamentals of Anti-Parallel Diode Pair …………………………… 33 3.3 Mixer Design and Implementation ……………………………………… 35 3.4 MMIC Performances …………………………………………………… 36 3.5 Summary ………………………………………………………………… 38 Chapter 4 Ku-band MMIC Low-Noise Amplifier with Superiorly Low Thermal-Sensitivity Coefficients ………… 47 4.1 Introduction ……………………………………………………………… 47 4.2 Circuit Design …………………………………………………………… 48 4.3 Measurement Results and Discussions …………………………………… 52 4.4 Summary ………………………………………………………………… 54 Chapter 5 6-18 GHz Flat Gain/Power Responses Power Amplifier MMIC with High PAE by Using Transformer Networks ……… 61 5.1 Introduction ……………………………………………………………… 61 5.2 Circuit Design …………………………………………………………… 62 5.3 Measurement Results and Discussion …………………………………… 64 5.5 Summary ………………………………………………………………… 66 Chapter 6 Investigations of Metamorphic HEMT and X-band Amplifier Simulation …………… 73 6.1 Introduction ……………………………………………………………… 73 6.2 Device Structure and Fabrication ……………………………………… 75 6.3 Experimental Results and Discussions …………………………………… 77 6.3.1 DC Characteristics ……………………………………………… 77 6.3.2 Microwave Characteristics ……………………………………… 81 6.4 Small Signal Models ……………………………………………………… 81 6.5 Circuits Design and Results …………………………………………… 82 6.6 Summary ………………………………………………………………… 84 Chapter 7 Conclusions and Prospects ………………………………………… 108 7.1 Conclusions ……………………………………………………………… 108 7.2 Prospects ……………………………………………………………… 110 References ………………………………………………………………………… 111 Publication List …………………………………………………………………… 122

    [1] D. M. Pozar, Microwave Engineering, John Wiley & Sons, 1998, pp. 583-641.
    [2] B. G. Choi, Y. S. Lee, C. S. Park, K. S. Yoon, “A Low Noise On-Chip Matched MMIC LNA of 0.76 dB Noise Figure at 5 GHz for High Speed Wireless LAN Applications,” IEEE GaAs Digest, pp. 143-146, 2000.
    [3] I. Bahl and P. Bhartia, Microwave Solid-State Circuit Design, 2nd ed., Wiley Interscience, New York, 2003.
    [4] A. Fazal and G. Alitya, HEMTs and HBTs; Devices, Fabrication, and Circuits, Artech House, 1991.
    [5] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers,” IEEE Trans. Electron. Devices, Vol. 48, pp. 472, 2001.
    [6] L. D. Nguyen, A.S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron. Devices, Vol. 39, pp. 2007, 1992.
    [7] H. S. Yoon, J. H. Lee, J. Y. Shim, S.J. Kim, D. M. Kang, J. Y. Hong, W. J. Chang, and K. H. Lee, “Low noise characteristics of double-doped In0.52Al0.48As/In0.53Ga0.47As power metamorphic HEMT on GaAs substrate with wide head T-Shaped gate,” in Proc. Int. Conf. Indium Phosphide and Related Materials, pp. 201, 2002.
    [8] P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., Vol. 11, pp. 59, 1990.
    [9] Y. C. Chen, D. L. Ingram, R. Lai, M. Barsky, R. Grunbacher, T. Block, H. C. Yen, and D. C. Streit, “A 95-GHz InP HEMT MMIC amplifier with 427-mW power output,” IEEE Microwave Guide. Wave Lett., Vol. 8, pp. 399, 1998.
    [10] T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, ”30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron. Devices, Vol. 49, pp. 1694, 2002.
    [11] A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “0.3 μm gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,”
    IEEE Electron Device Lett., Vol. 18, pp. 284, 1997.
    [12] J. B. Shealy, M. Matloubian, T. Y. Liu, W. Lam, and C. Ngo, “0.9W/mm, 76% P.A.E. (7GHz) GaInAs/InP Composite Channel HEMTs,” in Proc. Int. Conf. Indium Phosphide and Related Materials, pp. 201, 1997.
    [13] I. D. Robertson and S. Lucyszyn, RFIC and MMIC design and technology, Institution of Electrical Engineers, 2001.
    [14] S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
    [15] B. Razavi, RF Microelectronics, Prentice Hall, New Jersey, 1998.
    [16] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed., Artech House, 1997
    [17] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice Hall, New Jersey, 1996.
    [18] S. C. Cripps, RF Power Amplifiers for Wireless Communication. Norwood, MA: Artech House, 1999.
    [19] S. C. Cripps, “A theory for the prediction of GaAs FET load-pull power contours”, IEEE MTT-S Int. Microwave Symp. Dig., pp. 221, 1983.
    [20] R. S. Pengelly, Microwave Field-Effect Transistors:Theory, Design, and Applications, 3rd ed., Noble, 1994.
    [21] D. K. Mirsa, Radio-Frequency and Microwave communication Circuits Analysis and Design, John Wiley and Sons, 2001.
    [22] S.J. Mahon, D.J. Skellern and F. Green, “A technique for modeling s-parameters for HEMT structures as a function of gate bias,” IEEE Trans. Microwave Theory Tech. Vol. 40, pp. 1430, 1992.
    [23] E. W. Lin, Y. Kok, G. S. Dow, H. Wang, T. T. Chung, S. Lau, D. Okamuro, and B. R. Allen, “An advanced single-chip Ka-band transceiver,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 513, 1996.
    [24] K.S. Ang, A.H. Baree, S. Nam, I.D. Robertson, “A Millimeter-wave Monolithic Sub-harmonically Pumped Resistive Mixer,” Asia Pacific Microwave Conference, pp. 222, 1999.
    [25] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Transactionson Microwave Theory and Techniques, Vol. 23, pp. 667, 1975.
    [26] K.L. Deng, Y.B. Wu, Y.L. Tang, H. Wang, and C.H. Chen, “Broadband monolithic GaAs-based HEMT diode mixers,” Asia-Pacific Microw. Conf., pp. 1135, 2000.
    [27] W.C. Chen, S.Y. Chen, J.H. Tsai, T.W. Huang, and H. Wang, “A 38-48-GHz miniature MMIC subharmonic mixer,” Gallium Arsenide and Other Semiconductor Application Symp., pp. 437, 2005.
    [28] Avago mixer AMMP-6545 datasheet.
    http://www.avagotech.com/products/rf_for_mobile,_wlan,_mmw/
    mmw_&_microwave_devices/mixers/ammp-6545/
    [29] K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota and O. Ishida. "A millimeter-wave broadband monolithic even harmonic image rejection mixer,"IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, pp. 1443, 1998.
    [30] Y. L. Kok, M. Ahmadi, H. Wang, B. R. Allen and T. Lin. "A Ka-band monolithic single-chip transceiver using sub-harmonic mixer," Radio Frequency Integrated Circuits (RFIC) Symp., pp. 235, 1998.
    [31] T. Abbas and M. Bin Ihsan, “Design of a two stage Low Noise Amplifier at Ku Band,” Microelectronics, ICM 2005. The 17th International Conference, pp. 40, 2005.
    [32] K. B. Schad, U. Urben, E. Soenmez, P. Abele, H. Schumacher, “A Ku band SiGe low noise amplifier,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 52, 2000.
    [33] K. L. Deng, M. D. Tsai, C. S. Lin, K. Y. Lin, H. Wang, S. H. Wang, W. Y. Lien, G. J. Chem, “A Ku-band CMOS low-noise amplifier,” Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication
    and Wireless Sensor Networks, pp. 183, 2005.
    [34] K. Yamauchi, Y. Iyama, M. Yamaguchi, Y.Ikeda, S. Urasaki, T. Takagi, “X-band MMIC power amplifier with an on-chiptemperature-compensation circuit,” IEEE Trans. Microwave Theory and Techniques, Vol. 49, pp. 2501, 2001.
    [35] B. Maoz, "Temperature compensation? It's so easy [hybrid MIC temperature-controlled attenuation]," IEEE GaAs IC Symp. Dig., pp. 277, 1988.
    [36] K. Yamanaka, K. Yamauchi, K. Mori, Y. Ikeda, H. Ikematsu, N. Tanahashi, and T. Takagi, “Ku-Band Low Noise MMIC Amplifier with Bias Circuit for Compensation of Temperature Dependence and Process Variation,” IEEE
    MTT-S Int. Microwave Symp. Dig., Vol. 3, pp. 1427, 2002.
    [37] P. Khanbtran and H. Morkner, “A high performance yet easy to use low noise amplifier in SMT package for 6 to 20 GHz low cost applications,” Microwave Conference, 2004. 34th European, Vol. 1, pp. 365, 2004.
    [38] J. S. Yuk, B. G. Choi, Y. S. Lee, C. S. Park, and S. Kang, “Low-Power PHEMT MMIC LNA for C-Band Applications,” Microwave Opt Technol Lett,
    Vol. 48, pp. 253, 2006.
    [39] H. Z. Liu, C. H. Lin, C. K. Chu, H. K. Huang, M. P. Houng, Y. H. Wang Ch. H. Chang, C. L. Wu and C. S. Chang, A Single Supply, “Ku-band 1-W Power Amplifier MMIC With Compact Self-bias PHEMTs,” IEEE Microw. Wireless Compon. Lett. Vol. 16, pp. 330, 2006.
    [40] C. W. Huang, S. J. Chang, W. Wu, C. L. Wu, and C. S. Chang, “A Ku-Band Four-Stage Temperature Compensated PHEMT MMIC Power Amplifier,” Microwave Opt Technol Lett, Vol. 44, pp. 438, 2005.
    [41] N. Tanahashi, K. Kanaya, T. Matsuzuka, I. Katoh, Y. Notani, T. Ishida, T. Oku, T. Ishikawa, M. Komaru, and Y. Matsuda, “A W-band ultra low noise amplifier MMIC using GaAs PHEMT,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, pp. 2225, 2003.
    [42] TriQuent's datasheet for TGA8399B-SCC.
    http://www.triquint.com/prodserv/more_info/?prod_id=210&page_id=48
    [43] A. Platzker, K. T. Hetzler, and J. B. Cole, “Development of Highly Dense Four-Stage Flat-Gain 1-W 6-18-GHz MMIC Power Amplifier Chip,” IEEE Journal of Solid-State Circuits, Vol. 27, pp. 1405, 1992.
    [44] K. Johnson, A. Lum, S. Nelson, E. Reese, and K. Salzman, “High efficiency broadband power amplifier MMIC,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., pp. 43, 1992.
    [45] A. R. Barnes, M. T. Moore, and M. B. Allenson, “A 6-18 GHz broadband high power MMIC for EW applications,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, pp. 1429, 1997.
    [46] J. J. Komiak, and K. Nichols, “High Efficiency Wideband 6 to 18 GHz PHEMT Power Amplifier MMIC,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 905, 2002.
    [47] TriQuent's datasheet for TGA2501.
    http://www.triquint.com/prodserv/more_info/?prod_id=316&page_id=351
    [48] Mimix's datasheet for CMM0618-BD.
    http://www.mimixbroadband.com/Data/Document-Library/CMM0618-BD.pdf
    [49] Y. Itoh, M. Mochizuki, M. Kohno, H. Masuno, T. Takagi, and Y. Mitsui, “A 5-10 GHz 15-W GaAs MESFET amplifier with flat gain and power responses,”IEEE Microwave and Guided Wave Letters, Vol. 5, pp. 454, 1995.
    [50] P. I. Day, “Transmission Line Transformation Between Arbitrary Impedances Using the Smith Chart,” IEEE Trans. Microwave Theory and Techniques, Vol. 23, pp. 772, 1975.
    [51] T. A. Milligan, “Transmission-Line Transformation between Arbitrary Impedances,” IEEE Trans. Microwave Theory and Techniques, Vol. 24, pp. 159, 1976.
    [52] A. P. de Hek, P. A. H. Hunneman, M. Demmler, and A. Hulsmann, “A compact broadband high efficient x-band 9-watt PHEMT MMIC highpower amplifier for phased array radar applications,” IEEE GaAs IC Symp. Dig., pp. 276, 1999.
    [53] S. L. G. Chu, A. Platzker, M. Borkowski, R. Mallavarpu, M. Snow, A. Bowlby, D. Teeter, T. Kazior, and K. Alavi, “A 7.4 to 8.4 GHz high efficiency PHEMT three-stage power amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, pp. 947, 2000.
    [54] W. Bosch, J. G. E. Mayock, M. F. O’Keefe, and J. McMonagle, “Low cost X-band power amplifier MMIC fabricated on a 0.25 μm GaAs PHEMT process,” IEEE Int. Radar Conf., pp. 22, 2005.
    [55] R.Wang, M. Cole, L. D. Hou, P. Chu, C. D. Chang, T. A. Midford, and T. Cisco, “A 55% efficiency 5 W PHEMT X-band MMIC high power amplifier,” IEEE GaAs IC Symp. Dig., pp. 111, 1996.
    [56] A. Bessemoulin, R. Quay, S. Ramberger, H. Massler, and M. Schlechtweg, “A 4-W X-band compact coplanar high-power amplifier MMIC with 18-dB gain and 25% PAE,” IEEE Journal of Solid-State Circuits, Vol. 38, pp. 1433, 2003.
    [57] C.K. Chu, H.K. Huang, H.Z. Liu, C.H. Lin, C.H. Chang, C.L. Wu, C.S. Chang, and Y.H. Wang, “A 9.1–10.7 GHz 10-W, 40-dB Gain Four-Stage PHEMT MMIC Power Amplifier,” IEEE Microw. Wireless Compon. Lett. Vol. 17, pp. 151, 2007.
    [58] M. H. Somerville, J. A. del Alamo, and W. Hoke, “Direct correlation between impact ionization and the kink effect in InAlAs/InGaAs HEMT’s,” IEEE Electron Dev. Lett., Vol. 17, pp. 473, 1996.
    [59] M. H. Somerville, C. S. Putnam, and J. A. del Alamo, “Determining dominant breakdown mechanisms in InP HEMTs,” IEEE Electron Dev. Lett., Vol. 22, pp. 565, 2001.
    [60] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, “Influence of hole accumulation on source resistance, kink effect and on-state breakdown of InP-based high electron mobility transistors: light irradiation
    study,” Jpn, J. Appl. Phys., Vol. 41, pp. 1104, 2002.
    [61] M. H. Somerville, R. Blanchard, J. A. del Alamo, K. G. Duh, and P. C. Chao, “On-state breakdown in power HEMT’s: measurements and modeling,” IEEE Trans. Electron. Devices, Vol. 46, pp. 1087, 1999.
    [62] M. H. Somerville, R. Blanchard, J. A. del Alamo, G. Duh, and P. C. Chao, “A new gate current extraction technique for measurement of on-state breakdown voltage in HEMT’s,” IEEE Electron Dev. Lett., Vol. 19, pp. 405, 1998.
    [63] R. Menozzi, M. Borgarino, Y. Baeyens, M. V. Hove, and F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched
    InAlAs/InGaAs/InP HEMT’s,” IEEE Microwave Guide. Wave Lett., Vol. 7, pp. 3, 1997.
    [64] C. S. Putnam, M. H. Somerville, J. A. del Alamo, P. C. Chao, and K. G. Duh, “Temperature dependence of breakdown voltage in InAlAs/InGaAs HEMTs: theory and experiments,” in Int. Conf. Indium Phosphide and Related
    Materials, pp. 197, 1997.
    [65] A. A. Moolji, S. R. Bahl, and J. A. del Alamo, “Impact ionization in InAlAs/InGaAs HFET’s,” IEEE Electron Dev. Lett., Vol. 15, pp. 313, 1994.
    [66] M. H. Somerville, J. A. Del Alamo, and W. Hoke, “A new physical model for the kink effect on InAlAs/InGaAs HEMT’s,” IEDM Tech. Dig., pp. 201, 1995.
    [67] T. Suemitsu, T. Enoki, M. Tomizawa, N. Shigekawa, and Y. Ishii, “Mechanisms and structural dependence of kink phenomena in InAlAs/InGaAs HEMT’s,” Proc. Int. Conf. Indium Phosphide and Related Materials, pp. 365, 1997.
    [68] T. Suemitsu, H. Fushimi, S. Kodama, S. Tsunashima, and S. Kimura, “Influence of Hole Accumulation on the source resistance, kink effect and on-state breakdown of InP-based HEMTs: light irradiation study,” Proc. Int. Conf. Indium Phosphide and Related Materials, pp. 456. 2001.
    [69] M. H. Somerville, A. Ernst, and J. A. Del Alamo, “A physical model for kink effect in InAlAs/InGaAs HEMT’s,” IEEE Trans. Electron. Devices, Vol. 47, pp. 922, 2000
    [70] R. T. Webster, S. Wu, and F. M. Anwar, “Impact ionization in InAlAs/InGaAs/InAlAs HEMT’s,” IEEE Electron Device Lett., Vol. 21, pp. 193, 2000.
    [71] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “Impact ionization suppression by quantum confinement: effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET’s,” IEEE Trans. Electron. Devices, Vol. 46, pp. 826, 1999.
    [72] A. Mazzanti, G. Verzellesi, G. Sozzi, R. Menozzi, C. Lanzieri, and C. Canali, “Physical investigation of trap-related effects in power HFETs and their reliability implications,” IEEE Trans. Device and Materials Reliability, Vol. 2, pp. 65, 2002.
    [73] M. Boudrissa, E. Delos, C. Gaquiere, M. Rousseau, Y. Cordier, D. Theron, and J. C. D. Jaeger, “Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT: modeling and measurements,” IEEE Trans. Electron. Devices, Vol. 48, pp. 1037, 2001.
    [74] M. Zaknounce, B. Bonte, Y. Cordier, S. Bollaert, Y. Druelle, D. Theron, and Y. Crosnier, “High performance metamorphic In0.32Al0.68As/In0.33Ga0.67 As HEMTs on GaAs substrate with an inverse step InAlAs metamorphic buffer,”
    56th Device Research Conf, pp. 34, 1998.
    [75] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, and Y. J. Chen, “Characteristics of In0.52Al0.48As/InxGa1-xAs HEMT’s with various InxGa1-xAs channels,”Solid-State Electronic., Vol. 48, pp. 119, 2004.
    [76] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., Vol. 26, pp. 59, 2005.
    [77] Y. J. Chen, W.C. Hsu, C.S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., Vol. 85, pp.5087, 2004.
    [78] Y. J. Li, W. C. Hsu, I. L. Chen, C. S. Lee, Y. J. Chen, and I. Lo, “Improved characteristics of novel metamorphic InAlAs/InGaAs HEMT with symmetric graded InxGa1-xAs channel,” J. Vac. Sci. Technol. B, Vol. 22, pp. 2429, 2004.
    [79] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and Y. S. Lin, “Characteristics of In0.52Al0.48As/ InxGa1-xAsyP1-y/In0.52Al0.48As HEMT’s,” J. Vac. Sci. Technol. B, Vol. 22, pp.1044, 2004.
    [80] S. J. Yu, W. C. Hsu, Y. J. Li, and Y. J. Chen, “Improved Step Graded Channel heterostructure Field Effect Transistor,” Jpn. J. Appl. Phys., Vol. 43, pp. 5942, 2004.
    [81] K. H. Su, W. C. Hsu, C. S. Lee, P. J. Hu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, "Investigations on highly stable thermal characteristics of a dilute In0.2Ga0.8AsSb/GaAs doped-channel field-effect transistor," Semicond.
    Sci. Technol. Vol. 23, 2008.
    [82] J. Dichmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer, and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs high electron mobility transistors on InP. I: Off-state,” Jpn, J. Appl. Phys., Vol. 34, pp. 66, 1995.
    [83] S. R. Bahl, J. A. Del Alamo, J. Dickmann, and S. Schildberg, “Off-state breakdown voltage in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron Devices, vol. 42, p. 15, 1995.
    [84] G. Dambrine, A. Cappy, F. Heliodore, and E. Playerz, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. Microwave
    Theory and Techniques, Vol. 36, pp. 1151, 1988.
    [85] M. Berroth, and R. Bosch, "High-frequency equivalent circuit of GaAs FETs for large-signal applications," IEEE Trans. Microwave Theory and Techniques, Vol. 39, pp. 224, 1991.

    下載圖示 校內:2013-08-06公開
    校外:2013-08-06公開
    QR CODE