| 研究生: |
王聖銘 Wang, Sheng-Ming |
|---|---|
| 論文名稱: |
具高功因之可調導通時間交流-直流升壓型轉換器 High Power Factor AC-DC Boost Converter with Adaptive On-time Control |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 交-直流轉換器 、切換式升壓轉換器 、功因修正控制器 、固定導通時間控制 、前饋可調導通時間電路 、總諧波失真改善 |
| 外文關鍵詞: | AC/DC Converter, Switching Boost Converter, Power Factor Correction(PFC), Constant On-time Control, Feedforward Adaptive On-time(FAO), Total Harmonic Distortion(THD) Improvement |
| 相關次數: | 點閱:138 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩部分,第一部分主要介紹現今功因修正技術。從功因修正器的研究背景與動機,介紹到功因修正的原理及各式架構。接著對於現今功因修正控制技術分類為兩大種,操作於連續導通模式以及操作於邊界導通模式的控制法。並特別針對目前控制方式最簡單且較熱門的固定導通時間控制法做進一步的介紹,逐項分析此控制法的缺陷及目前文獻所提出的解決方案。
第二部分即是針對固定導通時間控制法提出改善架構。對於固定導通時間控制法總協波失真表現較差的缺陷提出「前饋可調導通時間電路」改善方案,透過此電路的前饋機制可以使功因修正器在不同輸入電壓環境下都能透過偵測前饋資訊來調整導通時間,達到總諧波失真最佳化的效果。而對於緩啟動、重新啟動電路及最小導通時間議題也同時提出了整合電路,將面積大幅縮小同時滿足各種功能需求。本系統是採用TSMC 0.35μm 混和訊號製程透過國家晶片中心進行晶片實作。結果顯示,系統在加入前饋可調導通時間電路後總諧波失真值在不同輸入電壓環境下都有明顯改善,在輸入電流波形量測上也可看出差異,功因值也皆達到0.95以上,而最高轉換效率可以達到95%。
This thesis is composed of two parts. The first part introduces modern power factor correction technology. It introduces the power factor correction from the background and motivation to the operation principles and various power stage architectures. The control technology is classified into two types: the continuous conduction mode; and the boundary conduction mode. Finally, it analysis the shortcomings of constant on-time control, which is the simplest and the most popular technique, and discusses the solution from the recent papers.
In second part of this thesis, a feedforward loop adaptive on-time (FAO) improved circuit for wide input range, low total harmonic distortion(THD) is presented. It can change the on-time with a feedforward loop in different condition to get a better THD. It also combines the soft-start, restart timer, and minimum off time issues in one circuit, which can significantly reduce the area while meeting the needs of variety of functions.
This PFC controller was implemented with the 0.35 μm Mixed-signal CMOS process. The results show that the THD has been improved after adding FAO circuit under different input voltage. The improvements can be discovered by input current waveform. For the specification of 10-80W load range, the peak efficiency of 95% is achieved, and the power factor maintained at 0.95.
[1] J.W. Kim, S.M. Choi, and K.T. Kim, "Variable On-time Control of the Critical Conduction Mode Boost Power Factor Correction Converter to Improve Zero-crossing Distortion," in Proc. IEEE Power Electron. and Drive Systems, 2005, pp. 1542-1546.
[2] S. H. Tang, C. Dan, C. S. Huang, C. Y. Liu, and L. K. H., "A new on-time adjustment scheme for the reduction of input current distortion of critical-mode power factor correction boost converters," in Proc. IEEE Int. Power Electronics Conf., 2010, pp. 1717-1724.
[3] J. C. Tsai, C. L. Chen, Y. T. Chen, C. L. Ni, C. Y. Chen, and K. H. Chen, "Perturbation On-Time (POT) Technique in Power Factor Correction (PFC) Controller for Low Total Harmonic Distortion and High Power Factor," IEEE Trans. Power Electron., vol. 28, pp. 199-212, 2013.
[4] C. P. Basso, "Switch-mode power supplies," pp. 510-514.
[5] B. Chen, Y.X. Xie, F. Huang, and J.H. Chen, "A Novel Single-phase Buck PFC Converter Based on One-cycle Control," in Proc. IEEE Int. Power Electronics and Motion Control Conf., 2006, pp. 1-5.
[6] Y. Jianyou, Z. Junming, W. Xinke, Q. Zhaoming, and X. Ming, "Performance comparison between buck and boost CRM PFC converter," in Proc. IEEE Control and Modeling for Power Electronics 2010, pp. 1-5.
[7] W. Xinke, Y. Jianyou, Z. Junming, and Q. Zhaoming, "Variable On-Time (VOT)-Controlled Critical Conduction Mode Buck PFC Converter for High-Input AC/DC HB-LED Lighting Applications," IEEE Trans. Power Electron., vol. 27, pp. 4530-4539, 2012.
[8] NCL30002. High Power. Factor Buck LED Driver [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/NCL30002-D.PDF
[9] UCC29910A. Buck PFC Controller [Online]. Available: http://www.ti.com/lit/ds/symlink/ucc29910a.pdf
[10] C.W. Chang, C.L. Ni, C.L. Tsai, Y.T. Chen, C.Y. Chen, K.H. Chen, et al., "High-PF and ultra-low-THD power factor correction controller by sinusoidal-wave synthesis and optimized THD control," in Proc. IEEE Int. Sym. Circuits and Systems 2013, pp. 917-920.
[11] L6562. TRANSITION-MODE PFC CONTROLLER [Online]. Available: http://www.st.com/web/en/resource/technical/document/datasheet/CD00003316.pdf
[12] IR1150. ONE CYCLE CONTROL PFC IC [Online]. Available: http://www.irf.com/product-info/datasheets/data/ir1150.pdf
[13] C. Jingquan, D. Maksimovic, and R. W. Erickson, "Analysis and design of a low-stress buck-boost converter in universal-input PFC applications," IEEE Trans. Power Electron., vol. 21, pp. 320-329, 2006.
[14] J.C. Hung, T.F. Wu, Y.S. Lai, and Y.M. Chen, "A Soft-Switching Single-Stage Converter with Buck-Boost PFC Based on an Asymmetrical Half-Bridge Topology," in Proc. IEEE Power Electronics Specialists Conf., 2005, pp. 1959-1965.
[15] L. S. Yang, T. J. Liang, and J. F. Chen, "Analysis and Design of a Single-Phase Buck-boost Power-Factor-Correction Circuit for Universal Input Voltage," in Proc. IEEE Int. Industrial Electronics Society Conf., 2007, pp. 1461-1465.
[16] N. P. Papanikolaou and E. C. Tatakis, "Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode," Electric Power Applications, IEE Proceedings -, vol. 149, pp. 283-291, 2002.
[17] J.J. Lee, J.M. Kwon, E.H. Kim, W.Y. Choi, and B.H. Kwon, "Single-Stage Single-Switch PFC Flyback Converter Using a Synchronous Rectifier," IEEE Trans. Industrial Electronics., vol. 55, pp. 1352-1365, 2008.
[18] LT3798. Isolated No Opto-Coupler Flyback Controller with Active PFC [Online]. Available: http://cds.linear.com/docs/en/datasheet/3798fa.pdf
[19] LD7577J. High Voltage Green-Mode PWM Controller with Brown-Out Protection [Online]. Available: http://www.leadtrend.com.tw/pdf/LD7577J-DS-00b.pdf
[20] W. Zijian, W. Shuo, K. Pengju, and F. C. Lee, "DM EMI Noise Prediction for Constant On-Time, Critical Mode Power Factor Correction Converters," IEEE Trans. Power Electron., vol. 27, pp. 3150-3157, 2012.
[21] 吳炎培博士、陳德玉博士, "切換式電源供應器之雜訊分析與其EMI濾波器之設計," 1995年6月.
[22] AN966. L6561, ENHANCED TRANSITION MODE POWER FACTOR CORRECTOR [Online]. Available: http://pdf.datasheetcatalog.com/datasheet/SGSThomsonMicroelectronics/mXyyvyr.pdf
[23] L. Rossetto, "Control techniques for power factor correction converters," Proc. PEMC'94, pp. 1310 - 1318 1994.
[24] AND8353/D. Implementing Cost Effective and Robust Power Factor Correction with the NCP1607 [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/AND8353-D.PDF
[25] ML4812. Power Factor Controller [Online]. Available: http://www.100y.com.tw/pdf_file/38-Fairchild-ML4812.pdf
[26] UC3854. Enhanced High Power Factor Preregulator [Online]. Available: http://www.datasheetarchive.com/UC3854-datasheet.html
[27] CS3810. Power factor correction [Online]. Available: www.datasheet5.com/download/CS-3810DW20/672959
[28] Bruce L. Wilkison; Josh Mandelcorn, "Unity power factor power supply," U.S. Patent 4,677,366, Jun. 30, 1987.
[29] D. Maksimovic, J. Yungtaek, and R. W. Erickson, "Nonlinear-carrier control for high-power-factor boost rectifiers," IEEE Trans. Power Electron., vol. 11, pp. 578-584, 1996.
[30] K. M. Smedley and S. Cuk, "One-cycle control of switching converters," in Proc. IEEE Power Electronics Specialists Conf., 1991, pp. 888-896.
[31] L. Zheren, K. M. Smedley, and M. Yunhong, "Time quantity one-cycle control for power-factor correctors," IEEE Trans. Power Electron., vol. 12, pp. 369-375, 1997.
[32] M. Orabi, R. Haron, and M. Z. Youssef, "Stability analysis of PFC converters with one-cycle control," in Proc. IEEE Int. Telecommunications Energy Conf., 2009, pp. 1-6.
[33] K. C. Chang, K. H. Chen, T. J. Liang, and B. D. Liu, "Design of one-cycle control power factor correction IC with unipolar supply voltage," in Proc. IEEE Int. Symp. Circuits and Systems, 2009, pp. 3078-3081.
[34] Z. Housheng and M. Tianxing, "A Novel Single-Phase Power Factor Corrector with One Cycle Control Technology," in Proc. IEEE Int. Conf. Intelligent Computation Technology and Automation, 2009, pp. 961-964.
[35] C. Huang, W. M. Lin, and X. J. Guo, "One-Cycle Control of single-phase PFC rectifiers with fast dynamic response and low distortion," in Proc. IEEE Int. Power Electronics and Motion Control Conf., 2012, pp. 1621-1625.
[36] L. Bing, R. Brown, and M. Soldano, "Bridgeless PFC implementation using one cycle control technique," in Proc. IEEE Applied Power Electronics Conf., 2005, pp. 812-817 Vol. 2.
[37] W. Yubin and L. Jiwen, "A Novel High-performance Single-phase PFC Approach Based on One-cycle Control," in Proc. IEEE Int. Industrial Electronics Conf., 2006, pp. 1763-1768.
[38] T. Kommers Jappe and S. A. Mussa, "Current technique applied in single phase PFC boost converter based on discrete-time One Cycle Control," in Proc. IEEE Int. Telecommunications Energy Conf., 2011, pp. 1-5.
[39] NCP1607. Cost Effective Power Factor Controller [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/NCP1607-D.PDF
[40] FAN6961. Boundary Mode PFC Controller [Online]. Available: http://www.fairchildsemi.com/ds/FA/FAN6961.pdf
[41] C. W-C and C. C-L, "A zero-current detection circuit with optimal ZVS/VS for boundary mode boost PFC converter," in Proc. IEEE Int. Symp. Industrial Electronics 2012, pp. 137-142.
[42] O. Semiconductor. Power Factor Correction (PFC) Handbook [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/HBD853-D.PDF
[43] AN1792. Design of fixed-off-time-controlled PFC pre-regulators with the L6562 [Online]. Available: http://freedatasheets.com/downloads/AN1792.pdf
[44] R. Yong-Seong, M. Young-Jin, G. Jung-Chul, and Y. Changsik, "Active Power Factor Correction (PFC) Circuit With Resistor-Free Zero-Current Detection," IEEE Trans. Power Electron., vol. 26, pp. 630-637, 2011.
[45] Y. Kai, R. Xinbo, M. Xiaojing, and Y. Zhihong, "Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter," IEEE Trans. Industrial Electronics., vol. 58, pp. 1856-1865, 2011.
[46] Z. Wanfeng, F. Guang, Y. F. Liu, and W. Bin, "A digital power factor correction (PFC) control strategy optimized for DSP," IEEE Trans. Power Electron., vol. 19, pp. 1474-1485, 2004.
[47] B. A. Mather, Maksimovic, x, and D., "A Simple Digital Power-Factor Correction Rectifier Controller," IEEE Trans. Power Electron., vol. 26, pp. 9-19, 2011.
[48] Y.P. Su, C.Y. Chen, C.L. Ni, Y.C. Kang, Y.T. Chen, J.C. Tsai, et al., " High Efficiency and Low Current Mismatch Interleaving Power Factor Correction Controller With Variable Sampling Slope and Automatic Loading Detection Techniques," IEEE Trans. Power Electron., vol. 28, pp. 5159-5173, 2013.
[49] C. Hangseok and L. Balogh, "A Cross-Coupled Master–Slave Interleaving Method for Boundary Conduction Mode (BCM) PFC Converters," IEEE Trans. Power Electron., vol. 27, pp. 4202-4211, 2012.
校內:2019-01-28公開