研究生: |
謝孟成 Hsieh, Meng-Cheng |
---|---|
論文名稱: |
使用隨機森林演算法設計線上機械動力模組診斷系統 Design of an On-Line Mechanical Power Module Diagnosis System Based on Random Forest |
指導教授: |
蔡明祺
Tsai, Ming-Ching |
共同指導教授: |
高宏宇
Kao, Hung-Yu 謝旻甫 Hsieh, Min-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 智慧製造 、線上故障診斷 、機械學習 、隨機森林演算法 、馬達聯軸偏心診斷 |
外文關鍵詞: | intelligent manufacturing, on-line diagnosis system, machine learning, random forest algorithm, motor coupling eccentricity diagnosis. |
相關次數: | 點閱:157 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電動馬達為智慧生產製造不可或缺的動力來源,如能於線上檢測出馬達故障及各項非即時錯誤,就能在確切時間完成機台保養及更換,縮短停工影響。馬達聯軸為馬達軸承連結外部機械動力模組間的動力傳動,聯軸受損往往造成轉子偏心現象,傳統的馬達聯軸偏心故障診斷,是利用單一感測器收集馬達訊號加以分析,不過單一訊號可分析的故障種類有限,使用之線上診斷儀器常屬昂貴之設備,本文即在討論僅藉由馬達驅動器已具備之電壓、電流、速度感知器之資訊,以及伺服馬達上層控制命令的結合,針對週期性變速度之電子凸輪應用-飛剪,利用機械學習中隨機森林演算法分類器作聯軸偏心程度分類及判斷,以設計線上機械動力模組聯軸偏心診斷系統。
Electric motors are the important power source for intelligent manufacturing, early detection of emerging problems or non-timely faults of motors can save invaluable time and cost. Motor coupling eccentricity is one of the non-timely faults which can cause damage to power modules. The traditional on-line motor coupling eccentricity diagnosis methods rely on analyzing the information from a single sensor set on the motor. However, the sensors are always expensive and the single-data analyzing is not precise thus can only detect few kinds of motor faults. This research proposes a design methodology of an on-line mechanical power module diagnosis system based on machine learning and real-time raw data with motor controlling signals from the servo driver. The main research focus is on the coupling eccentricity fault classification which is performed using random forests algorithm.
[1] MBAlib-智慧產業. Available: http://t.cn/Rr4KD4J,Feb. 16, 2017
[2] P. J. Tavner and J. Penman, "Condition Monitoring of Electrical Machines," Herfordshine, England: Research Studies Press Ltd., 1987.
[3] P. Vas, "Parameter Estimate, Condition Monitoring, and Diagnosis of Electrical Machines," Clarendon Press Oxford, 1993.
[4] 葛世偉,李明遠, "馬達軸承故障線上診斷技術研究," 工程科技與教育學刊, vol. 12, pp. 1-7.
[5] O. Munoz-Ornelas, D. A. Elvira-Ortiz, R. A. Osornio-Rios, R. J. Romero-Troncoso, and L. A. Morales-Hernandez, "Methodology for Thermal Analysis of Induction Motors with Infrared Thermography Considering Camera Location," 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2016), pp. 7113-7118, Florence, Italy, 2016.
[6] A. F. Browne, S. Patel, S. A. Kaloti, S. M. Lopez, and P. Parikh, "Area Acoustic and Electromagnetic Emissions Monitoring of 3-phase Motors," 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1-6, Miami, FL, USA , 2017.
[7] I. Y. Önel and M. E. H. Benbouzid, "Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform Approaches Comparative Study," IEEE/ASME Transactions on Mechatronics, vol. 13, no. 2, pp. 257-262, 2008.
[8] M. E. H. Benbouzid, "A Review of Induction Motors Signature Analysis as a Medium for Faults Detection," IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200), vol. 4, pp. 1950-1955, 1998.
[9] X. Ren, W. Shao, and W. Z. Yang, "Extraction of Gearbox Fault Features from Vibration Signal Using Wavelet Transform," Journal of Physics.F. Q. Su : Conference Series, vol. 48, pp. 490-494, 2006.
[10] G. Ferenc, M. Lutovac, V. Kvrgic, and P. Stepanic, "A Proposed Approach to the Classification of Bearing Condition Using Wavelets and Random Forests," 2013 2nd Mediterranean Conference on Embedded Computing (MECO), pp. 140-143, 2013.
[11] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, "Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests," IEEE Sensors Journal, vol. 17, no. 17, pp. 5581-5588, 2017.
[12] L. Wen, X. Li, L. Gao, and Y. Zhang, "A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method," IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5990-5998, 2018.
[13] Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, "An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3137-3147, 2016.
[14] TSE-3100振動計,儀立購有限公司. Available: http://t.cn/RBYsbA2
[15] Delta AC Servo Drive & Motor ASDA-A2 Series. 2017.
[16] 台達交流伺服系統ASDA-M系列產品說明書. 2014.
[17] C. Bulac and A. Bulac, "Decision Trees," pp. 819-844, 2016.
[18] L. Breiman, "Random forests, " Machine Learning 45(1), pp. 5-32, 2001.
[19] L. Breiman, "Machine Learning," Begging preditors, pp. 123-140., 1996.
[20] Y. Ang, Z.H. Zhou, and A. Zhou, "Machine Learning and Its Application," Beijing:Tsinghua University Press, pp. l-40, 2006.
[21] Cherzhoucheer. (2017). Sklearn-RandomForest随机森林. Available: https://blog.csdn.net/CherDW/article/details/54971771
[22] ASDA-Soft軟體操作手冊. 2013.