| 研究生: |
蔡孟宏 Tsai, Meng-Hung |
|---|---|
| 論文名稱: |
密度泛函理論計算在電阻式記憶體和發光材料中的應用 Application of DFT calculation for resistance random access memory and luminescence materials |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 五氧化二鈮 、非晶態 、總自旋密度 、時間密度泛函理論 、藍光激發發光材料 、電阻式記憶體 |
| 外文關鍵詞: | ReRAM, Amorphization, TD-DFT, Nb2O5, Blue light-excited luminescence material, total spin density |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,以建構結晶態五氧化二鈮(crystalline Nb2O5)模型作為開始,藉由模擬出的密度和時間的變化(time-dependent density)和實際實驗值比較,確認結晶態五氧化二鈮模型的合理性。接下來,將該模型環境溫度逐漸提高,觀察徑向分佈函數(Radial distribution function, RDF)和均方位移(mean square displacement, MSD)的變化,計算理論模型的熔點。並和實際的實驗結果比較,驗證理論模型的熔點的合理性。
計算得到結晶態五氧化二鈮的理論熔點後,將該模型的環境溫度提高至熔點以上。待平衡後即進行焠火處理(quench),將得到一個具有長程無序(long-range disorder)的結構。該結構即可作為非晶態五氧化二鈮(amorphous Nb2O5)的模型。在此模型的基礎上進行多氧化態(multi-oxidation states)離子的摻雜,並探討摻雜離子和氧空缺(oxygen vacancy)間的交互作用對於能帶結構(band structure)及能量狀態密度(density of state)的影響。本研究所選用的多氧化態離子為錳離子(Manganese, Mn),氧化態分別為2+,4+及7+。藉由計算得到的總自旋密度(total spin density),確認在非晶態五氧化二鈮模型中摻雜的錳離子(Mn2+,Mn4+)處於弱場(weak field),高度自旋(high spin)。
隨後,我們將非晶態五氧化二鈮實際製成薄膜,並濺鍍上下電極,製成電阻式記憶體元件(ReRAM)。以實際實驗的方式,探討非晶化的影響及多氧化態離子摻雜和退火處理(annealing treatment)對導電機制(conduction mechanism)的影響。利用量測溫度和電阻的關係探討元件可能的導通機制。並更進一步利用X光電子能譜分析(X-ray photoelectron spectroscopy, XPS)證明了錳離子摻雜後的薄膜所製成的元件由氧空缺主導整體的傳導機制。並對該薄膜進行退火處理後發現,經200度退火處理後的薄膜處於導通狀態,該導電路徑由金屬離子及氧空缺所共同組成。
最後,我們利用時間密度泛函理論(Time dependent density functional theory, TDDFT)進行藍光激發發光材料(Blue light-excited luminescence material),Li2ZnTi3O8, LZTO,的吸收光譜(absorption spectrum)模擬。在實際實驗前,藉由模擬的方式,得到主體材料(host material)正確的吸收光譜,將有助於加速材料的開發。本研究以模擬出的吸收光譜和實際量測到的漫反射光譜(diffuse reflectance spectra, DRS)比較,確認模擬結果的合理性。並藉由探討活化劑(activator, Mn4+)對於主體材料(host material)吸收波段的影響,了解活化劑在主體材料中可能的能量轉移機制。
This study was initiated by constructing a crystalline model of Nb2O5. The validation of the model was accomplished by comparing the simulated time-dependent density with the actual experimental values. Subsequently, the temperature surrounding the model was gradually increased, and the changes in the radial distribution function (RDF) and mean square displacement (MSD) were observed to simulate the theoretical melting point of the crystalline model. By comparing the theoretical melting point with experimental results, the simulated melting point of the crystalline Nb2O5 model was established.
After calculating the theoretical melting point of crystalline Nb2O5, the temperature of the model was raised above the melting point. Once equilibrium was reached, the model was quenched, resulting in a structure with long-range disorder that served as a model for amorphous Nb2O5. Based on this model, ions with multi-oxidation states were doped, and the interactions between dopants and oxygen vacancies were explored to investigate their effects on the band structure and density of states. Manganese (Mn), with oxidation states of 2+, 4+, and 7+, was chosen as the multivalent ion in this study. By calculating the total spin density, it was confirmed that the doped Mn ions (Mn2+ and Mn4+) in the amorphous Nb2O5 model were in a weak field, high spin state.
Subsequently, we progressed to manufacturing thin films of amorphous Nb2O5 and applied electrodes to construct resistive random access memory (ReRAM) devices Through experimental investigations, we explored the impact of amorphization, dopants with multiple oxidation states, and annealing treatments on the conduction mechanism. We analyzed the relationship between temperature and resistance to gain insights into the potential conduction mechanism of the ReRAM devices. Additionally, we employed X-ray photoelectron spectroscopy (XPS) to demonstrate that the primary controlling factor for the conduction mechanism in Mn-ion-doped film-based devices is oxygen vacancies. Upon subjecting the thin film to annealing at 200 degrees Celsius, it exhibited a conductive state wherein the conductive path consisted of both metal ions and oxygen vacancies.
Lastly, we utilized time-dependent density functional theory (TDDFT) to simulate the absorption spectrum of a luminescent material, Li2ZnTi3O8 (LZTO), which can be excited by blue light. By obtaining the correct absorption spectrum of the host material through simulation, we aimed to accelerate material development prior to actual experiments. In this study, we compared the simulated absorption spectrum with the measured diffuse reflectance spectra (DRS) to validate the accuracy of our simulations. Furthermore, we investigated the influence of the activator (Mn4+ ion) on the absorption band of the host material and explored possible energy transfer mechanisms involving the activator within the host material.
1. Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S., Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 2012, 75 (7), 076502-1-31.
2. Coughlin, T., A Road Map for Technologies That Drive Consumer Storage. IEEE Consum Electr M 2019, 8 (2), 97-99.
3. Chang, T. C.; Chang, K. C.; Tsai, T. M.; Chu, T. J.; Sze, S. M., Resistance random access memory. Mater Today 2016, 19 (5), 254-264.
4. Molas, G.; Nowak, E., Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Appl Sci 2021, 11 (23), 11254-1-25.
5. Milo, V.; Malavena, G.; Monzio Compagnoni, C.; Ielmini, D., Memristive and CMOS Devices for Neuromorphic Computing. Materials 2020, 13 (1), 1-33.
6. Jacquemin, D.; Mennucci, B.; Adamo, C., Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Phys Chem Chem Phys 2011, 13 (38), 16987-16998.
7. Herbert, J. M.; Zhang, X.; Morrison, A. F.; Liu, J., Density-Functional Methods for Excited States. Acc Chem Res 2016, 368 (5), 931-41.
8. Tran, F.; Stelzl, J.; Blaha, P., Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys 2016, 144 (20), 204120-1-21.
9. Wedig, A.; Luebben, M.; Cho, D. Y.; Moors, M.; Skaja, K.; Rana, V.; Hasegawa, T.; Adepalli, K. K.; Yildiz, B.; Waser, R.; Valov, I., Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol 2016, 11 (1), 67-75.
10. Jain, B.; Huang, C.-s.; Misra, D.; Tapily, K.; Clark, R. D.; Consiglio, S.; Wajda, C. S.; Leusink, G. J., Multilevel Resistive Switching in Hf-Based RRAM. ECS Trans 2019, 89 (3), 39-44.
11. Zhao, H. B.; Tu, H. L.; Wei, F.; Xiong, Y. H.; Zhang, X. Q.; Du, J., Characteristics and mechanism of nano-polycrystalline La2O3 thin-film resistance switching memory. Phys Status Solidi-R 2013, 7 (11), 1005-1008.
12. Pi, C.; Ren, Y.; Liu, Z. Q.; Chim, W. K., Unipolar Memristive Switching in Yttrium Oxide and RESET Current Reduction Using a Yttrium Interlayer. ESL 2011, 15 (3), G5-G7.
13. Hong, X. L.; Loy, D. J.; Dananjaya, P. A.; Tan, F. A.; Ng, C.; Lew, W., Oxide-based RRAM materials for neuromorphic computing. J Mater Sci 2018, 53 (12), 8720-8746.
14. Yu, S.; Lee, B.; Wong, H.-S. P., Metal Oxide Resistive Switching Memory. In Functional Metal Oxide Nanostructures, Wu, J.; Cao, J.; Han, W.-Q.; Janotti, A.; Kim, H.-C., Eds. Springer New York: New York, NY, 2012; pp 303-335.
15. Ituen, E.; Mkpenie, V.; Moses, E.; Obot, I., Electrochemical kinetics, molecular dynamics, adsorption and anticorrosion behavior of melatonin biomolecule on steel surface in acidic medium. Bioelectrochemistry 2019, 129, 42-53.
16. Masoumi, S.; Arab, B.; Valipour, H., A study of thermo-mechanical properties of the cross-linked epoxy: An atomistic simulation. Polymer 2015, 70, 351-360.
17. González, M. A., Force fields and molecular dynamics simulations. JDN 2011, 12, 169-200.
18. Chandler, D., Introduction to modern statistical mechanics. Oxford University Press: New York, 1987; p xiii, 274 p.
19. Hartree, D. R., The wave mechanics of an atom with a non-Coulomb central field Part I theory and methods. P Camb Philos Soc 1928, 24, 89-110.
20. Fock, V., Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61 (1), 126-148.
21. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Phys Rev B 1964, 136 (3b), B864-B871.
22. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 1965, 140 (4a), 1133-1138.
23. 潘峰, 阻變存儲器材料與器件. 科學出版社: 2014; p 381.
24. Zhang, H. W.; Gao, B.; Sun, B.; Chen, G. P.; Zeng, L.; Liu, L. F.; Liu, X. Y.; Lu, J.; Han, R. Q.; Kang, J. F.; Yu, B., Ionic doping effect in ZrO2 resistive switching memory. Appl Phys Lett 2010, 96 (12), 123502-1-3.
25. Shih, A.; Zhou, W. D.; Qiu, J.; Yang, H. J.; Chen, S. Y.; Mi, Z. T.; Shih, I., Highly stable resistive switching on monocrystalline ZnO. Nanotechnology 2010, 21 (12), 1-6.
26. 張哲維. 射頻磁控濺鍍法沉積錳微量添加氧化鈮薄膜對RRAM電特性影響及機制研究. 碩士論文, 國立成功大學, 電機工程所, 2017.
27. Waser, R.; Dittmann, R.; Staikov, G.; Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv Mater 2009, 21 (25-26), 2632-2663.
28. Guo, X.; Schindler, C., Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl Phys Lett 2007, 91 (13), 133513-1-3.
29. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F., Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mat Sci Eng R 2014, 83, 1-59.
30. Choi, S. J.; Park, G. S.; Kim, K. H.; Cho, S.; Yang, W. Y.; Li, X. S.; Moon, J. H.; Lee, K. J.; Kim, K., In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory. Adv Mater 2011, 23 (29), 3272-3277.
31. Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W., Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 2012, 3, 732-739.
32. Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N., Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 2011, 22 (25), 1-22.
33. Sawa, A., Resistive switching in transition metal oxides. Mater Today 2008, 11 (6), 28-36.
34. Yang, J. J.; Miao, F.; Pickett, M. D.; Ohlberg, D. A. A.; Stewart, D. R.; Lau, C. N.; Williams, R. S., The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 2010, 21 (33), 1-6.
35. Chu, Y. T.; Tsai, M. H.; Huang, C. L., Resistive switching properties and conduction mechanisms of LaSmOx thin film by RF sputtering for RRAM applications. Mater Sci Eng B-Adv 2021, 271, 115313-1-8.
36. Tsai, M. H.; Shih, C. J.; Chang, C. W.; Chu, Y. T.; Wu, Y. S.; Huang, C. L., Resistive switching properties of Mn-doped amorphous Nb2O5 thin films for resistive RAM application. Mat Sci Semicon Proc 2022, 152, 107059-1-8.
37. Tseng, H. T.; Hsu, T. H.; Tsai, M. H.; Huang, C. Y.; Huang, C. L., Resistive switching characteristics of sol-gel derived La2Zr2O7 thin film for RRAM applications. J Alloy Compd 2022, 899, 163294-1-10.
38. Lee, M. J.; Han, S.; Jeon, S. H.; Park, B. H.; Kang, B. S.; Ahn, S. E.; Kim, K. H.; Lee, C. B.; Kim, C. J.; Yoo, I. K.; Seo, D. H.; Li, X. S.; Park, J. B.; Lee, J. H.; Park, Y., Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory. Nano Lett 2009, 9 (4), 1476-1481.
39. Chen, C.; Gao, S.; Zeng, F.; Wang, G. Y.; Li, S. Z.; Song, C.; Pan, F., Conductance quantization in oxygen-anion-migration-based resistive switching memory devices. Appl Phys Lett 2013, 103 (4), 043510-1-4.
40. Wang, W.; Fujita, S.; Wong, S. S., Elimination of Forming Process for TiOx Nonvolatile Memory Devices. IEEE Electr Device L 2009, 30 (7), 763-765.
41. Park, G. S.; Li, X. S.; Kim, D. C.; Jung, R. J.; Lee, M. J.; Seo, S., Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 2007, 91 (22), 222103-1-3.
42. Tsunoda, K.; Fukuzumi, Y.; Jameson, J. R.; Wang, Z.; Griffin, P. B.; Nishi, Y., Bipolar resistive switching in polycrystalline TiO2 films. Appl Phys Lett 2007, 90 (11), 113501-1-3.
43. Waser, R.; Aono, M., Nanoionics-based resistive switching memories. Nat Mater 2007, 6 (11), 833-840.
44. Szot, K.; Speier, W.; Carius, R.; Zastrow, U.; Beyer, W., Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys Rev Lett 2002, 88 (7).
45. Jeong, D. S.; Schroeder, H.; Waser, R., Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell. Phys Rev B 2009, 79 (19), 195317-1-10.
46. Burcham, L. J.; Datka, J.; Wachs, I. E., In situ vibrational spectroscopy studies of supported niobium oxide catalysts. J Phys Chem B 1999, 103 (29), 6015-6024.
47. Bieger, T.; Maier, J.; Waser, R., Kinetics of Oxygen Incorporation in SrTiO3 (Fe-Doped) - an Optical Investigation. Sensor Actuat B-Chem 1992, 7 (1-3), 763-768.
48. Zhang, Y. Z.; Wang, Y. J.; Zhao, L. C.; Yang, X. Y.; Hou, C. H.; Wu, J.; Su, R.; Jia, S.; Shyue, J. J.; Luo, D. Y.; Chen, P.; Yu, M. T.; Li, Q. Y.; Li, L.; Gong, Q. H.; Zhu, R., Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energ Environ Sci 2021, 14 (12), 6526-6535.
49. Yin, M.; Zhou, P.; Lv, H. B.; Xu, J.; Song, Y. L.; Fu, X. F.; Tang, T. A.; Chen, B. A.; Lin, Y. Y., Improvement of resistive switching in Cu(x)O using new RESET mode. IEEE Electr Device L 2008, 29 (7), 681-683.
50. Chiu, F.-C., A Review on Conduction Mechanisms in Dielectric Films. Adv Mater Sci Eng 2014, 2014, 1-18.
51. Wong, H. S. P.; Lee, H. Y.; Yu, S. M.; Chen, Y. S.; Wu, Y.; Chen, P. S.; Lee, B.; Chen, F. T.; Tsai, M. J., Metal-Oxide RRAM. P IEEE 2012, 100 (6), 1951-1970.
52. Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F., Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Lett 2009, 9 (4), 1636-1643.
53. Sarkar, P. K.; Prajapat, M.; Barman, A.; Bhattacharjee, S.; Roy, A., Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices. J Mater Sci 2016, 51 (9), 4411-4418.
54. Prakash, R.; Rathore, B. P. S.; Kaur, D., Effect of top electrode material on resistive switching properties of WN based thin films for non volatile memory application. J Alloy Compd 2017, 726, 693-697.
55. Ismail, M.; Abbas, H.; Choi, C.; Kim, S., Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J Alloy Compd 2020, 835, 155256-1-9.
56. Liao, H. Y.; Tsai, M. H.; Kao, W. L.; Kuo, D. Y.; Shyue, J. J., Effects of the temperature and beam parameters on depth profiles in X-ray photoelectron spectrometry and secondary ion mass spectrometry under C60+-Ar+ cosputtering. Anal Chim Acta 2014, 852, 129-136.
57. Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S., Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved X-ray photoelectron spectroscopy and QUASES. Surf Interface Anal 2004, 36 (13), 1637-1641.
58. Rumble, J. R.; Bickham, D. M.; Powell, C. J., The Nist X-Ray Photoelectron-Spectroscopy Database. Surf Interface Anal 1992, 19 (1-12), 241-246.
59. Mc Evoy, K. M.; Genet, M. J.; Dupont-Gillain, C. C., Principal component analysis: A versatile method for processing and investigation of XPS spectra. Anal Chem 2008, 80 (19), 7226-7238.
60. Hadamek, T.; Posadas, A. B.; Dhamdhere, A.; Smith, D. J.; Demkov, A. A., Spectral identification scheme for epitaxially grown single-phase niobium dioxide. J Appl Phys 2016, 119 (9), 095308-1-16.
61. Lin, W. C.; Wang, W. B.; Lin, Y. C.; Yu, B. Y.; Chen, Y. Y.; Hsu, M. F.; Jou, J. H.; Shyue, J. J., Migration of small molecules during the degradation of organic light-emitting diodes. Org Electron 2009, 10 (4), 581-586.
62. Chen, B.; Lu, Y.; Gao, B.; Fu, Y. H.; Zhang, F. F.; Huang, P.; Chen, Y. S.; Liu, L. F.; Liu, X. Y.; Kang, J. F.; Wang, Y. Y.; Fang, Z.; Yu, H. Y.; Li, X.; Wang, X. P.; Singh, N.; Lo, G. Q.; Kwong, D. L., Physical mechanisms of endurance degradation in TMO-RRAM. In International Electron Devices Meeting, 2011; pp 12.3.1-12.3.4.
63. Lee, H. Y.; Chen, Y. S.; Chen, P. S.; Gu, P. Y.; Hsu, Y. Y.; Wang, S. M.; Liu, W. H.; Tsai, C. H.; Sheu, S. S.; Chiang, P. C.; Lin, W. P.; Lin, C. H.; Chen, W. S.; Chen, F. T.; Lien, C. H.; Tsai, M. J., Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. In International Electron Devices Meeting, IEEE: 2010; pp 19.7.1-19.7.4.
64. Kang, J.; Kim, Y. H.; Bang, J.; Chang, K. J., Direct and defect-assisted electron tunneling through ultrathin SiO(2) layers from first principles. Phys Rev B 2008, 77 (19), 195321-1-5.
65. Gao, B.; Zhang, H. W.; Chen, B.; Liu, L. F.; Liu, X. Y.; Han, R. Q.; Kang, J. F.; Fang, Z.; Yu, H. Y.; Yu, B.; Kwong, D. L., Modeling of Retention Failure Behavior in Bipolar Oxide-Based Resistive Switching Memory. IEEE Electr Device L 2011, 32 (3), 276-278.
66. Laidler, K. J., The Development of the Arrhenius Equation. J Chem Educ 1984, 61 (6), 494-498.
67. Xu, F.; Gao, B.; Xi, Y.; Tang, J.; Wu, H.; Qian, H. In Atomic-Device Hybrid Modeling of Relaxation Effect in Analog RRAM for Neuromorphic Computing, 2020 IEEE International Electron Devices Meeting, 12-18 Dec. 2020; 2020; pp 13.2.1-13.2.4.
68. Gatehouse, B. M.; Wadsley, A. D., Crystal Structure of High Temperature Form of Niobium Pentoxide. Acta Crystallogr 1964, 17 (12), 1545-1554.
69. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J Am Chem Soc 1992, 114 (25), 10024-10035.
70. Li, Y. F., Boron-nitride nanotube triggered self-assembly of hexagonal boron-nitride nanostructure. Phys Chem Chem Phys 2014, 16 (38), 20689-20696.
71. Andersen, H. C., Molecular-Dynamics Simulations at Constant Pressure and-or Temperature. J Chem Phys 1980, 72 (4), 2384-2393.
72. Yuzhakova, T.; Rakic, V.; Guimon, C.; Auroux, A., Preparation and characterization of Me2O3-CeO2 (Me = B, Al, Ga, In) mixed-oxide catalysts. Chem Mater 2007, 19 (12), 2970-2981.
73. Ibrahim, M.; Bright, N. F. H.; Rowland, J. F., The Binary System CaO-Nb2O5. J Am Ceram Soc 1962, 45 (7), 329-334.
74. Xiong, K.; Robertson, J.; Clark, S. J., Passivation of oxygen vacancy states in HfO2 by nitrogen. J Appl Phys 2006, 99 (4), 044105-1-4.
75. Ramirez-Salgado, J.; Quintana-Solorzano, R.; Mejia-Centeno, I.; Armendariz-Herrera, H.; Rodriguez-Hernandez, A.; Guzman-Castillo, M. D.; Valente, J. S., On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation. Appl Surf Sci 2022, 573, 151428-1-11.
76. Sharma, S.; Ramesh, P.; Swaminathan, P., Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State. J Electron Mater 2015, 44 (12), 4710-4716.
77. Tseng, I. W.; Tsai, M.-H.; Hsu, T.-H.; Lin, C.-A.; Lin, S.-K.; Huang, C.-L., Tunable luminescence properties of GeO2-Doped Li2ZnTi3O8: Mn4+ red phosphor. Opt Laser Technol 2023, 157, 108777-1-8.
78. Adachi, S., Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review. J Lumin 2018, 202, 263-281.
79. Zhang, G.; Chen, W. B.; Wang, Y. A.; Chen, X.; Li, Y. Y.; Zhao, L.; Yang, Y. Q., Synthesis and luminescence properties of a novel deep red phosphor Li2ZnTi3O8:Mn4+ for plant-cultivation. Spectrochim Acta A 2020, 240, 118567-1-7.
80. Zhang, S. A.; Hu, Y. H.; Duan, H.; Fu, Y. R.; He, M., An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs. J Alloy Compd 2017, 693, 315-325.
81. Lu, Z. Z.; Huang, T. J.; Deng, R. P.; Wang, H.; Wen, L. L.; Huang, M. X.; Zhou, L. Y.; Yao, C. Y., Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs. Superlattice Microst 2018, 117, 476-487.
82. Cao, R. P.; Peng, M. Y.; Song, E. H.; Qiu, J. R., High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED. Ecs J Solid State Sc 2012, 1 (4), R123-R126.
83. Shu, W.; Jiang, L. L.; Xiao, S. G.; Yang, X. L.; Ding, J. W., GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor. Mater Sci Eng B-Adv 2012, 177 (2), 274-277.
84. Wang, Z. Y.; Xia, Z. G.; Molokeev, M. S.; Atuchin, V. V.; Liu, Q. L., Blue-shift of Eu2+ emission in (Ba,Sr)3Lu(PO4)3:Eu2+ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress. Dalton T 2014, 43 (44), 16800-16804.
85. Meng, L.; Zhang, K. F.; Pan, K.; Qu, Y.; Wang, G. F., Controlled synthesis of CaTiO3:Ln3+ nanocrystals for luminescence and photocatalytic hydrogen production. Rsc Adv 2016, 6 (7), 5761-5766.
86. Shao, Q. Y.; Lin, H. Y.; Dong, Y.; Jiang, J. Q., Temperature-dependent photoluminescence properties of (Ba,Sr)2SiO4:Eu2+ phosphors for white LEDs applications. J Lumin 2014, 151, 165-169.
87. Zhou, Y. Y.; Qiu, Z. F.; Lu, M. K.; Ma, Q. A.; Zhang, A. Y.; Zhou, G. J.; Zhang, H. P.; Yang, Z. S., Photoluminescence characteristics of pure and Dy-doped ZnNb2O6 nanoparticles prepared by a combustion method. J Phys Chem C 2007, 111 (28), 10190-10193.
88. Khalam, L. A.; Thomas, S.; Sebastian, M. T., Tailoring the microwave dielectric properties of MgNb2O6 and Mg4Nb2O9 ceramics. Int J Appl Ceram Tec 2007, 4 (4), 359-366.
89. Pullar, R. C.; Breeze, J. D.; Alford, N. M., Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J Am Ceram Soc 2005, 88 (9), 2466-2471.
90. Mähne, H.; Berger, L.; Martin, D.; Klemm, V.; Slesazeck, S.; Jakschik, S.; Rafaja, D.; Mikolajick, T., Filamentary resistive switching in amorphous and polycrystalline Nb2O5 thin films. Solid State Electron 2012, 72, 73-77.
91. Nath, S. K.; Nandi, S. K.; Li, S.; Elliman, R. G., Detection and spatial mapping of conductive filaments in metal/oxide/metal cross-point devices using a thin photoresist layer. Appl Phys Lett 2019, 114 (6), 062901-1-5.
92. Hanzig, F.; Mahne, H.; Vesely, J.; Wylezich, H.; Slesazeck, S.; Leuteritz, A.; Zschornak, M.; Motylenko, M.; Klemm, V.; Mikolajick, T.; Rafaja, D., Effect of the stoichiometry of niobium oxide on the resistive switching of Nb2O5 based metal-insulator-metal stacks. J Electron Spectrosc 2015, 202, 122-127.
93. Sim, H.; Choi, D.; Lee, D.; Seo, S.; Lee, M. J.; Yoo, I. K.; Hwang, H., Resistance-switching characteristics of polycrystalline Nb2O5 for nonvolatile memory application. IEEE Electr Device L 2005, 26 (5), 292-294.
94. Liu, X.; Sadaf, S. M.; Park, S.; Kim, S.; Cha, E.; Lee, D.; Jung, G. Y.; Hwang, H., Complementary Resistive Switching in Niobium Oxide-Based Resistive Memory Devices. IEEE Electr Device L 2013, 34 (2), 235-237.
95. Sadaf, S. M.; Liu, X.; Son, M.; Park, S.; Choudhury, S. H.; Cha, E.; Siddik, M.; Shin, J.; Hwang, H., Highly uniform and reliable resistance switching properties in bilayer WOx/NbOx RRAM devices. Phys Status Solidi A 2012, 209 (6), 1179-1183.
96. Mähne, H.; Wylezich, H.; Hanzig, F.; Slesazeck, S.; Rafaja, D.; Mikolajick, T., Analog resistive switching behavior of Al/Nb2O5/Al device. Semicond Sci Technol 2014, 29 (10), 104002-1-6.
97. Das, B.; Sarkar, P. K.; Das, N. S.; Sarkar, S.; Chattopadhyay, K. K., Flexible, transparent resistive switching device based on topological insulator Bi2Se3-organic composite. J Appl Phys 2018, 124 (12), 124503-1-8.
98. Gao, B.; Zhang, H. W.; Yu, S.; Sun, B.; Liu, L. F.; Liu, X. Y.; Wang, Y.; Han, R. Q.; Kang, J. F.; Yu, B.; Wang, Y. Y. In Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology, 2009 Symposium on VLSI Technology, 15-17 June 2009; 2009; pp 30-31.
99. Yu, Z. C.; Tang, L.; Ma, N. T. P.; Horike, S.; Chen, W. Q., Recent progress of amorphous and glassy coordination polymers. Coordin Chem Rev 2022, 469, 214646-1-40.
100. Su, C. H.; Huang, C. L., Investigation of the microwave dielectric properties of Li2ZnTi5O12 ceramics. J Alloy Compd 2016, 678, 102-108.
101. Su, C. H.; Wang, Y. S.; Huang, C. L., Characterization and microwave dielectric properties of Mg2YVO6 ceramic. J Alloy Compd 2015, 641, 93-98.
102. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, Molecules, Solids, and Surfaces - Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys Rev B 1992, 46 (11), 6671-6687.
103. Ucker, C. L.; Gularte, L. T.; Fernandes, C. D.; Goetzke, V.; Moreira, E. C.; Raubach, C. W.; Moreira, M. L.; Cava, S. S., Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells. J Am Ceram Soc 2019, 102 (4), 1884-1892.
104. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. Apl Mater 2013, 1 (1), 011002-1-11.
105. Pham, H. H.; Wang, L. W., Oxygen vacancy and hole conduction in amorphous TiO2. Phys Chem Chem Phys 2015, 17 (1), 541-550.
106. Chen, C.; Pan, F.; Wang, Z. S.; Yang, J.; Zeng, F., Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 2012, 111 (1), 013702-1-6.
107. Chen, B.; Lu, Y.; Gao, B.; Fu, Y. H.; Zhang, F. F.; Huang, P.; Chen, Y. S.; Liu, L. F.; Liu, X. Y.; Kang, J. F.; Wang, Y. Y.; Fang, Z.; Yu, H. Y.; Li, X.; Wang, X. P.; Singh, N.; Lo, G. Q.; Kwong, D. L., Physical mechanisms of endurance degradation in TMO-RRAM. 2011 International Electron Devices Meeting 2011, 12.3.1-12.3.4.
108. 施家絨. 射頻濺鍍法製備應用於電阻式記憶體之氧化鈮薄膜. 碩士論文, 國立成功大學, 電機工程所, 2017.
109. Swathi, S. P.; Angappane, S., Low power multilevel resistive switching in titanium oxide-based RRAM devices by interface engineering. J Sci-Adv Mater Dev 2021, 6 (4), 601-610.
110. Banno, N.; Tada, M.; Sakamoto, T.; Okamoto, K.; Miyamura, M.; Iguchi, N.; Hada, H., Improved Switching Voltage Variation of Cu Atom Switch for Nonvolatile Programmable Logic. IEEE Trans Electron Devices 2014, 61 (11), 3827-3832.
111. Nardi, F.; Larentis, S.; Balatti, S.; Gilmer, D. C.; Ielmini, D., Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM-Part I: Experimental Study. IEEE Trans Electron Devices 2012, 59 (9), 2461-2467.
112. Nath, S. K.; Nandi, S. K.; Ratcliff, T.; Elliman, R. G., Engineering the Threshold Switching Response of Nb2O5-Based Memristors by Ti Doping. Acs Appl Mater Inter 2021, 13 (2), 2845-2852.
113. Xu, J.; Zhu, Y. Y.; Liu, Y.; Wang, H. J.; Zou, Z. R.; Ma, H. Y.; Wu, X. K.; Xiong, R., Improved Performance of NbOx Resistive Switching Memory by In-Situ N Doping. Nanomaterials-Basel 2022, 12 (6), 1-15.
114. Sahoo, S., Conduction and switching behavior of e-beam deposited polycrystalline Nb2O5 based nano-ionic memristor for non-volatile memory applications. J Alloy Compd 2021, 866, 115394-1-8.
115. Chen, L.; Sun, Q. Q.; Gu, J. J.; Xu, Y.; Ding, S. J.; Zhang, D. W., Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr Appl Phys 2011, 11 (3), 849-852.
116. Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A. L., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans Electron Devices 2009, 56 (2), 186-192.
117. Fang, Z.; Yu, H. Y.; Liu, W. J.; Wang, Z. R.; Tran, X. A.; Gao, B.; Kang, J. F., Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices. IEEE Electr Device L 2010, 31 (5), 476-478.
118. Nakamura, R.; Toda, T.; Tsukui, S.; Tane, M.; Ishimaru, M.; Suzuki, T.; Nakajima, H., Diffusion of oxygen in amorphous Al2O3, Ta2O5, and Nb2O5. J Appl Phys 2014, 116 (3), 033504-1-8.
119. Lim, E. W.; Ismail, R., Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics-Switz 2015, 4 (3), 586-613.
120. Aziz, J.; Kim, H.; Rehman, S.; Kadam, K. D.; Patil, H.; Aftab, S.; Khan, M. F.; Kim, D. K., Discrete memristive levels and logic gate applications of Nb2O5 devices. J Alloy Compd 2021, 879, 160385-1-9.
121. Gul, F., A simplified method to determine carrier transport mechanisms of metal-oxide resistive random access memory (RRAM) devices. Mater Today Proc 2021, 46, 6976-6978.
122. Jung, S.; Kim, S.; Oh, J. H.; Ryoo, K. C.; Lee, J. H.; Shin, H.; Park, B. G. In Investigation of conduction mechanism in Ti/Si3N4/p-Si stacked RRAM, 2013 IEEE 5th International Nanoelectronics Conference (INEC), 2-4 Jan. 2013; 2013; pp 97-99.
123. Cheng, C. H.; Yeh, F. S.; Chin, A., Low-Power High-Performance Non-Volatile Memory on a Flexible Substrate with Excellent Endurance. Adv Mater 2011, 23 (7), 902-905.
124. Chien, C. S.; Tsai, M. H.; Huang, C. L., Electrical properties and current conduction mechanisms of LaGdO3 thin film by RF sputtering for RRAM applications. J Asian Ceram Soc 2020, 8 (3), 948-956.
125. Chen, Y. T.; Hsu, T. H.; Huang, C. L., Resistive switching properties of amorphous Sm2Ti2O7 thin film prepared by RF sputtering for RRAM applications. J Alloy Compd 2022, 910, 164960-1-12.
126. Carta, D.; Salaoru, I.; Khiat, A.; Regoutz, A.; Mitterbauer, C.; Harrison, N. M.; Prodromakis, T., Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach. Acs Appl Mater Inter 2016, 8 (30), 19605-19611.
校內:2028-05-26公開