簡易檢索 / 詳目顯示

研究生: 羅得銘
Lo, Te-Ming
論文名稱: 含整合風能與波浪發電系統之直流微電網穩定度分析與研究
Stability Analysis and Research of a DC Micro Grid with an Integrated Wind and Wave Energy Generation System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 221
中文關鍵詞: 直流微電網雙向直流/直流轉換器線性永磁式發電機永磁式同步發電機
外文關鍵詞: DC micro-grid, bidirectional DC/DC converter, linear-permanent magnet generator (LPMG), permanent-magnet synchronous generator (PMSG)
相關次數: 點閱:157下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究風能與波浪能饋送至電網或提供獨立負載之不確定性與間斷特性,本論文提出一個含有混合風能與波浪能發電系統之直流微電網,它是由風力發電機、波浪發電機、雙向直流/直流轉換器以及併網型換流器所組成,能量儲存設備可以經由雙向直流/直流轉換器連接至直流側。本論文採用MATLAB/Simulink完成整合風能與波浪能發電設備至直流微電網之建模及模擬。在時域模擬之中,完成系統的穩態響應分析,在不同條件之下的動態模擬也一併完成。為了驗證本論文所提系統的基本特性以及操作,也建置了一個實驗室等級的實驗平台,在實測結果顯示在不同的條件下,系統可以保證穩定運行操作特性以及穩定提供功率至負載。

    In order to study uncertainty and intermittent characteristics of wind power and wave power fed to a power grid or supplied isolated loads, this thesis proposes a DC micro grid with a hybrid wind and wave power generation system. The studied system consists of a wind power generator, a wave power generator, a bi-directional DC/DC converter, and a grid-tied inverter. Energy storage devices can be connected to DC side of the bi-directional DC/DC converter. The studied system with the DC micro grid joined with the wind and wave power generation systems is modeled and simulated using Simulink in MATLAB. In time-domain simulations, the steady-state responses of the studied system are performed while the dynamic simulations of the studied system under various conditions are also carried out. To confirm the fundamental operating characteristics of the studied system, a laboratory-scale test platform is established. The experimental results reveal that the studied system can guarantee stable operation and stably supply the generated power to loads or power grid under different operating conditions.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 IX 圖目錄 XI 符號說明 XVI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 3 1-3 本論文之貢獻 8 1-4 研究內容概要 8 第二章 系統數學模型 11 2-1 前言 11 2-2 系統架構 12 2-3 風之數學模型 16 2-4 風渦輪機之數學模型 18 2-5 永磁式同步發電機之數學模型 22 2-6 波浪威爾斯渦輪機之數學模型 24 2-7 鼠籠式轉子感應發電機之數學模型 28 2-8 阿基米德波浪搖擺之數學模型 30 2-9 線性永磁式發電機之數學模型 32 2-10 電力電子設備與控制系統之數學模型 35 2-11 旋角控制器之數學模型 45 2-12 雙向直流/直流轉換器與控制之數學模型 46 2-13 負載轉換器與控制之數學模型 51 2-14 系統控制流程 53 第三章 系統硬體介紹 56 3-1 前言 56 3-2 實際系統架構 57 3-3 永磁式同步發電機 59 3-4 鼠籠式轉子感應發電機 61 3-5 線性永磁式發電機 64 3-6 電力電子轉換器 66 3-7 雙向直流/直流轉換器 68 3-8 量測設備 75 第四章 系統之穩態分析 78 4-1 前言 78 4-2 利用直流微電網整合風力永磁式同步發電機與波浪鼠籠式 轉子感應發電機系統之穩態分析 79 4-3 利用直流微電網整合風力永磁式同步發電機與波浪線性永磁式 發電機系統之穩態分析 94 第五章 系統之動態與暫態分析 106 5-1 前言 106 5-2 利用直流微電網整合風力永磁式同步發電機與波浪鼠籠式 轉子感應發電機系統之動態與暫態分析 107 5-2-1 風渦輪機轉矩干擾之動態分析 107 5-2-2 三相短路故障之暫態分析 113 5-2-3 負載變動之動態分析 119 5-2-4 獨立系統負載變動之動態分析 124 5-2-5 風速與波浪速變動之動態分析 130 5-3 利用直流微電網整合風力永磁式同步發電機與波浪線性永 磁式發電機系統之動態與暫態分析 136 5-3-1 風渦輪機轉矩干擾之動態分析 136 5-3-2 三相短路故障之暫態分析 142 5-3-3 負載變動之動態分析 149 5-3-4 獨立系統負載變動之動態分析 155 5-3-5 風速與波浪速變動之動態分析 161 第六章 系統之實測分析 168 6-1 前言 168 6-2 利用直流微電網整合風力永磁式同步發電機與波浪鼠 籠式轉子感應發電機系統之實際量測與分析 168 6-2-1 系統穩態之實測與分析 169 6-2-2 負載切換之實測與分析 176 6-2-3 轉速變動之實測與分析 184 6-3 利用直流微電網整合風力永磁式同步發電機與波浪線 性永磁式發電機系統之實際量測與分析 191 6-3-1 系統穩態之實測與分析 191 6-3-2 負載切換之實測與分析 198 6-3-3 位移速變動之實測與分析 205 第七章 結論與未來研究方向 212 7-1 結論 212 7-2 未來研究方向 215 參考文獻 216 作者簡介 219 附錄 221

    [1] 經濟部能源局,http://www.moeaboe.gov.tw/,2010年8月。
    [2] 經濟部能源局,http://www.moeaboe.gov.tw/,2011年9月。
    [3] 台灣智慧型電網產業協會,http://www.smart.grid.org.tw/,2010年12月。
    [4] Y. Ito, Y. Zhongqing, and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE 4th Int. Power Electron. Motion Control Conf. (IPEMC), vol. 3, 2004, pp. 1740-1745.
    [5] S. K. Kim, J. H. Jeon, C. H. Cho, J. B. Ahn, and S. H. Kwon, “Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer,” IEEE Trans. Industrial electronics, vol. 55, no. 4, pp. 1677-1688, Apr. 2008.
    [6] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Trans. Industry Applications, vol. 43, no. 3, pp. 769-776, May 2007.
    [7] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, Jun. 2011.
    [8] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electronics, vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
    [9] M. G. D. S. Prado, F. Gardner, M. Damen, and H. Polinder, “Modeling and test results of the Archimedes wave swing,” Journal of Power and Energy, vol. 220, no. 8, pp. 855-868, 2006.
    [10] B. Das and B. C. Pal, “Voltage control performance of AWS connected for grid operation,” IEEE Trans. Energy Conversion, vol. 21, no. 2, pp. 353-361, Jun. 2006.
    [11] E. Tara, S. Filizadeh, J. Jatskevich, E. Dirks, A. Davoudi, M. Saeedifard, K. Strunz, and V. K. Sood, “Dynamic average-value modeling of hybrid-electric vehicular power systems,” IEEE Trans. Power Delivery, vol. 27, no. 1, pp. 430-438, Jan. 2012.
    [12] H. L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [13] D. Salomonsson, L. Söder, and A. Sannino, “An adaptive control system for a DC microgrid for data centers,” IEEE Trans. Industry Applications, vol. 44, no. 6, pp. 1910-1917, Nov, 2008.
    [14] M. M. N. Amin and O. A. Mohammed, “DC-bus voltage control technique for parallel-integrated permanent magnet wind generation systems,” IEEE Trans. Energy Conversion, vol. 26, no. 4, pp. 1140-1150, Dec. 2011.
    [15] D. Salomonsson and A. Sannino, “Low-voltage DC distribution system for commercial power systems with sensitive electronic loads,” IEEE Trans. Power Delivery, vol. 22, no. 3, pp. 1620-1627, Jul. 2007.
    [16] T. L. Vandoorn, B. Meersman, L. Degroot, B. Renders, and L. Vandevelde, “A control strategy for islanded microgrids with DC-link voltage control,” IEEE Trans. Power Delivery, vol. 26, no. 2, pp. 703-713, Apr. 2011.
    [17] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electronics, vol. 27, no. 1, pp. 122-132, Jan. 2012.
    [18] S. A. Daniel and N. A. Gounden, “A novel hybrid isolated generating system based on PV fed inverter-assisted wind-driven induction generators,” IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 416-422, Jun. 2004.
    [19] E. A. Amon, T. K. A. Brekken, and A. A. Schacher, “Maximum power point tracking for ocean wave energy conversion,” IEEE Trans. Industry Applications, vol. 48, no 3, pp. 1079-1086, May 2012.
    [20] F. Wu, X. P. Zhang, P. Ju, and M. J. H. Sterling, “Modeling and control of AWS-based wave energy conversion system integrated into power grid,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-1203, Aug. 2008.
    [21] C. Boström and M. Leijon, “Operation analysis of a wave energy converter under different load conditions,” IET Renewable Power Generation, vol. 5, no. 1, pp. 245-250, May 2011.
    [22] K. Rhinefrank, J. Prudell, A. Brekken, Z. Yen, E. Amon, “Comparison of direct-drive power takeoff systems for ocean wave energy applications,” IEEE J. Oceanic Engineering, vol. 37, no. 1, pp. 35-44. Jan. 2012.
    [23] L. Xu and D. Chen, “Control and operation of a DC microgrid with variable generation and energy storage,” IEEE Trans. Power Delivery, vol. 26, no. 4, pp. 2513-2521, Oct. 2011.
    [24] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [25] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [26] 曾百由,dsPIC數位訊號控制器原理與應用MPLAB C30開發實務,宏友圖書,民國九十八年十二月。
    [27] 梁適安,交換式電源供給器之理論與實務設計,全華圖書,民國九十八年八月。
    [28] 陳贊家,波浪能發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年六月。
    [29] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年六月。
    [30] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,民國一百零一年六月。
    [31] 陳稚勳,雙向並聯直流電源轉換模組之研製,國立成功大學電機工程學系碩士論文,民國一百零一年六月。
    [32] 葉峻睿,採用混合雙饋式感應發電機與永磁同步發電機之新型風力發電系統穩定度分析,國立成功大學電機工程學系碩士論文,民國一百零一年6月。

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE