簡易檢索 / 詳目顯示

研究生: 彭賢倫
Peng, Xian-Lun
論文名稱: 整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究
Stability Analysis and Research of a DC Microgrid Integrating Wind, Photovoltaic, and Wave Power-generation Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 200
中文關鍵詞: 風力發電系統波浪發電系統太陽能發電系統超級電容器雙向直流對直流轉換器雙向直流對交流轉換器直流微電網
外文關鍵詞: Wind power-generation system, wave power-generation system, photovoltaic power-generation system, supercapacitor, bidirectional DC/DC converter, bidirectional DC/AC converter, DC microgrid
相關次數: 點閱:143下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究風能、太陽能與波浪能饋送至市電或供電給獨立負載之不確定性與間斷特性,本論文提出一個含有混合風能、太陽能與波浪能發電系統之直流微電網,它是由風力發電機、太陽能陣列、波浪發電機、雙向直流對直流轉換器以及雙向直流對交流轉換器所組成,其中以超級電容器為基礎之能量儲存設備經由雙向直流對直流轉換器連接至直流微電網,且直流微電網透過雙向直流對交流轉換器與市電連接。本論文進行整合風能、太陽能、波浪能以及儲能設備至直流微電網之數學模型建立與模擬。在時域模擬中,完成該直流微電網系統的穩態響應分析,該直流微電網系統在不同運轉條件下的動態及暫態模擬也一併完成。

    In order to investigate the uncertainty and intermittent characteristics of wind, photovoltaic, and wave energy resources fed to a utility grid or supplying to isolated loads, this thesis proposes a DC microgrid with an integration of wind, photovoltaic, and wave power-generation systems. The studied system consists of a wind power generator, a PV array, a wave power generator, a bidirectional DC/DC converter for connecting with a supercapacitor-based energy storage device, and a bidirectional DC/AC converter for connecting to a utility grid. The mathematical model of the studied DC microgrid with the integrated wind, photovoltaic, and wave power-generation systems is established and simulated. The steady-state responses of the studied system using time-domain simulations are performed while the dynamic and transient responses of the studied system under various operating conditions are also carried out.

    摘 要 I SUMMARY II 致 謝 VIII 目 錄 IX 表目錄 XIII 圖目錄 XVI 符號說明 XXI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 4 1-3 本論文之貢獻 9 1-4 研究內容概要 10 第二章 系統數學模型 12 2-1 前言 12 2-2 系統架構 13 2-3 波浪發電系統之數學模型 17 2-3-1 阿基米德波浪搖擺之數學模型 17 2-3-2 線性永磁發電機之數學模型 19 2-3-3 線性永磁發電機之電壓源轉換器控制方塊圖 21 2-4 太陽能發電系統之數學模型 23 2-4-1 光伏電池模型 23 2-4-2 太陽能陣列模型 25 2-4-3 直流對直流升壓轉換器模型 26 2-5 風力發電系統之數學模型 30 2-5-1 風渦輪機之數學模型 32 2-5-2 等效質量-彈簧-阻尼器系統之數學模型 33 2-5-3 旋角控制器之數學模型 34 2-5-4 永磁同步發電機之數學模型 36 2-5-5 永磁同步發電機之電壓源轉換器控制方塊圖 38 2-6 超級電容器儲能系統之數學模型 39 2-6-1 超級電容器之數學模型 39 2-6-2 雙向直流對直流轉換器之數學模型 40 2-7 雙向直流對交流轉換器之數學模型 44 2-8 負載轉換器與控制之數學模型 50 2-9 系統控制流程 53 第三章 系統之穩態分析 55 3-1 前言 55 3-2 系統架構一之穩態分析 56 3-2-1 風速和日射量改變之分析 56 3-2-2 日射量和波浪力改變之分析 61 3-3 系統架構二之穩態分析 66 3-3-1 風速和日射量改變之分析 66 3-3-2 日射量和波浪力改變之分析 71 第四章 系統之小信號穩定度分析 76 4-1 前言 76 4-2 系統架構一之小訊號穩定度分析 82 4-2-1 日射量改變之分析 82 4-2-2 風速改變之分析 87 4-2-3 線性永磁發電機動子移動速度變動之分析 92 4-3 系統架構二之小訊號穩定度分析 97 4-3-1 日射量改變之分析 97 4-3-2 風速改變之分析 102 4-3-3 線性永磁發電機動子移動速度變動之分析 107 4-4 特徵值靈敏度分析 112 第五章 系統之動態與暫態分析 123 5-1 前言 123 5-2 系統架構一之動態與暫態分析 124 5-2-1 風速、日射量、波浪力與負載分別變化之動態分析 124 5-2-2 風速、日射量、波浪力同時變化之動態分析 131 5-2-3 波浪發電系統跳脫之暫態分析 137 5-2-4 突降負載之動態分析 143 5-3 系統架構二之動態與暫態分析 150 5-3-1 風速、日射量、波浪力與負載分別變化之動態分析 150 5-3-2 風速、日射量、波浪力同時變化之動態分析 158 5-3-3 波浪發電系統跳脫之暫態分析 165 5-3-4 實際風速與日射量之動態分析 172 5-4 系統操作模式切換之動態分析 180 第六章 結論與未來研究方向 187 6-1 結論 187 6-2 未來研究方向 189 參考文獻 191 附錄:系統參數 199

    [1] G. Ding, B. Fan, T. Long, H. Lan, Y. Liu, and J. Wang, “Analysis of technical properties of wind and solar photovoltaic power,” Journal of Applied Mathematics and Physics, vol. 1, no. 4, pp. 39-44, Oct. 2013.
    [2] Z. Nie, X. Xiao, R. McMahon, P. Clifton, Y. Wu, and S. Shao, “Emulation and control methods for direct drive linear wave energy converters,” IEEE Trans. Industrial Informatics, vol. 9, no. 2, pp. 790-798, May 2013.
    [3] 張永瑞、姜政綸、李奕德,微電網發展前景及技術剖析,臺灣能源期刊,第2卷,第3期,第259-278頁,2015年9月。
    [4] 李奕德、張永瑞、洪穎怡、陳士麟,核研所微型電網HCPV併網衝擊分析之研究,中華民國第三十一屆電力工程研討會,崑山科技大學,台南,台灣,2011年12月3-4日。
    [5] 林法正,陳彥豪,盧思穎,陳毓文,澎湖群島智慧電網示範介紹,國土及公共治理季刊,第5卷,第2期,第62-73頁,2017年7月。
    [6] W. F. Rao, B. Zhang, J. F. Pan, X. Y. Wu, J. P. Yuan, and L. Qiu, “Voltage control strategy of DC microgrid with direct drive wave energy generator,” in Proc. 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), Hong Kong, China, Dec. 12-14, 2017, pp. 1-7.
    [7] T. Shi, L. Shi, Y. Zhao, and Y. Ni, “Operation and coordination control of a DC micro-grid incorporating all-DC wind farm,” The Journal of Engineering, vol. 2017, no. 13, pp. 2477-2482, Oct. 2017.
    [8] A. Asheibi, A. Khalil, A. M. Elbreki, Z. Rajab, A. Alfergani, A. Mohamed, and A. Nouh, “Stability analysis of PV-based DC microgrid with communication delay,” in Proc. 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, Mar. 20-22, 2018, pp. 1-6.
    [9] K. T. Tan, B. Sivaneasan, X. Y. Peng, and P. L. So, “Control and operation of a DC grid-based wind power generation system in a microgrid,” IEEE Trans. Energy Conversions, vol. 31, no. 2, pp. 496-505, Jun. 2016.
    [10] Y. Da and A. Khaligh, “Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers,” in Proc. 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, Nov. 3-5, 2009, pp. 4577-4582.
    [11] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, Jun. 2011.
    [12] F. Zhang, Y. Yang, C. Ji, W. Wei, Y. Chen, C. Meng, Z. Jin, and Q. Zhang, “Power management strategy research for DC microgrid with hybrid storage system,” in Proc. 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, Jun. 7-10, 2015, pp. 62-68.
    [13] S. Augustine, M. K. Mishra, and N. Lakshminarasamma, “Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid,” IEEE Trans. Sustainable Energy, vol. 6, no. 1, pp. 132-141, Jan. 2015.
    [14] P. Prabhakaran, Y. Goyal, and V. Agarwal, “Novel nonlinear droop control techniques to overcome the load sharing and voltage regulation issues in DC microgrid,” IEEE Trans. Power Electronics, vol. 33, no. 5, pp. 4477-4487, May 2018.
    [15] D. S. G. Krishna and M. Patra, “Modeling of multi-phase DC-DC converter with a compensator for better voltage regulation in DC micro-grid application,” in Proc. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, Oct. 3-5, 2016, pp. 989-994.
    [16] A. A. A. Radwan and Y. A.-R. I. Mohamed, “Networked control and power management of AC/DC hybrid microgrids,” IEEE Systems Journal, vol. 11, no. 3, pp. 1662-1673, Sep. 2017.
    [17] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Industry Applications, vol. 53, no. 1, pp. 567-575, Jan./Feb. 2017.
    [18] A. Aderibole, H. H. Zeineldin, M. S. El-Moursi, J. C.-H. Peng, and M. A. Hosani, “Domain of stability characterization for hybrid microgrids considering different power sharing conditions,” IEEE Trans. Energy Conversion, vol. 33, no. 1, pp. 312-323, Mar. 2018.
    [19] J. Chen and J. Chen, “Stability analysis and parameters optimization of islanded microgrid with both ideal and dynamic constant power loads,” IEEE Trans. Industrial Electronics, vol. 65, no. 4, pp. 3263-3274, Apr. 2018.
    [20] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3528-3549, May 2016.
    [21] 武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
    [22] X. Zheng, F. Gao, H. Ali, and H. Liu, “A droop control based three phase bidirectional AC-DC converter for more electric aircraft applications,” Energies, vol. 10, pp. 400-416, Mar. 2017.
    [23] E. Tara, S. Filizadeh, J. Jatskevich, E. Dirks, A. Davoudi, M. Saeedifard, K. Strunz, and V. K. Sood, “Dynamic average-value modeling of hybrid-electric vehicular power systems,” IEEE Trans. Power Delivery, vol. 27, no. 1, pp. 430-438, Jan. 2012.
    [24] H. Polinder, M. E. C. Damen, and F. Gardner, “Linear PM generator system for wave energy conversion in the AWS,” IEEE Trans. Energy Conversion, vol. 19, no. 3, pp. 583-589, Sep. 2004.
    [25] H. Polinder, M. E. C. Damen, and F. Gardner, “Design, modelling and test results of the AWS PM linear generator,” European Transactions on Electrical Power, vol. 15, no. 3, pp. 245-256, May/Jun. 2005.
    [26] F. Wu, P. Ju, X.-P. Zhang, C. Qin, G. J. Peng, H. Huang, and J. Fang, “Modeling, control strategy, and power conditioning for direct-drive wave energy conversion to operate with power grid,” Proceedings of the IEEE, vol. 101, no. 4, pp. 925-941, Apr. 2013.
    [27] F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Optimal control for AWS-based wave energy conversion system,” IEEE Trans. Power Systems, vol. 24, no. 4, pp. 1747-1755, Sep. 2009.
    [28] C. E. Miller, A. van Zyl, and C. F. Landy, “Modelling a permanent magnet linear synchronous motor for control purposes,” in Proc. 2002 IEEE Africon Conference, George, South Africa, Oct. 2-4, 2002, pp. 671-674.
    [29] E. R. Laithwaite, Linear Electric Motors, London, UK: Mills &
    Boon, 1971.
    [30] M. I. Marei, M. Mokhtar, and A. A. El-Sattar, “MPPT strategy based on speed control for AWS-based wave energy conversion system,” Renewable Energy, vol. 83, pp. 305-317, Nov. 2015.
    [31] 康正泓,雙側管型線性永磁同步發電機於波浪能量轉換系統之設計與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [32] 林志昕,整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析,國立成功大學電機工程學系碩士論文,2010年7月。
    [33] 羅得銘,含整合風能與波浪發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2013年6月。
    [34] F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Modeling and control of AWS-based wave energy conversion system integrated into power grid,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-1204, Aug. 2008.
    [35] A. Chikh and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 644-652, Apr. 2015.
    [36] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [37] W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I. Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    [38] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and A. Ramirez, “Definitions and applications of dynamic average models for analysis of power systems,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2655-2669, Oct. 2010.
    [39] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications,” IEEE Trans. Sustainable Energy, vol. 3, no. 1, pp. 21-33, Jan. 2012.
    [40] M. S. Ngan and C. W. Tan, “A study of maximum power point tracking algorithms for stand-alone photovoltaic systems,” in Proc. 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, Apr. 18-19, 2011, pp. 22-27.
    [41] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: Transient stability studies,” IET Renewable Power Generation, vol. 3, no. 1, pp. 39-52, Mar. 2009.
    [42] S. Simani, “Overview of modelling and advanced control strategies for wind turbine systems,” Energies, vol. 8, pp. 13395-13418, Nov. 2015.
    [43] B. C. Pal and F. Mei, “Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems,” IET Renewable Power Generation, vol. 2, no. 3, pp. 181-190, Sep. 2008.
    [44] J. Yan, H. Lin, Y. Feng, X. Guo, Y. Huang, and Z. Q. Zhu, “Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system,” IET Renewable Power Generation, vol. 7, no. 1, pp. 28-35, Feb. 2013.
    [45] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Industry Applications, vol. 46, no. 1, pp. 331-339, Jan./Feb. 2010.
    [46] M. A. Abdullah, A. H. M. Yatim, and C. W. Tan, “A study of maximum power point tracking algorithms for wind energy system,” in Proc. 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, Jun. 27-29, 2011, pp. 321-326.
    [47] A. M. Gee, F. V. P. Robinson, and R. W. Dunn, “Analysis of battery lifetime extension in a small-scale wind-energy system using supercapacitors,” IEEE Trans. Energy Conversion, vol. 28, no. 1, pp. 24-33, Mar. 2013.
    [48] Z. Shi, F. Auger, E. Schaeffer, P. Guillemet, and L. Loron, “Interconnected observers for online supercapacitor ageing monitoring,” in Proc. 39th Annual Conference IEEE Industrial Electronics Society (IECON 2013), Vienna, Austria, Nov. 10-13, 2013, pp. 6746-6751.
    [49] A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3468-3473, Oct. 2010.
    [50] H.-L. Do, “Nonisolated bidirectional zero-voltage-switching DC-DC converter,” IEEE Trans. Power Electronics, vol. 26, no. 9, pp. 2563-2569, Sep. 2011.
    [51] D. Boroyevich, R. Burgos, I. Cvetkovic, and B. Wen, “Modeling and control of three-phase high-power high-frequency converters,” in Proc. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padova, Italy, Jun. 25-28, 2018, pp. 1-133.
    [52] 中央氣象局觀測資料查詢系統,[Online]. Available: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, retrieved date: May 22, 2019.

    下載圖示 校內:2022-08-12公開
    校外:2023-08-12公開
    QR CODE