簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tasi, Tzung-han
論文名稱: 風力用永磁發電機之特性分析
Characteristic Analysis of Wind Permanent-Magnet Generators
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 三相永磁發電機永久磁石有限元素法效率諧波
外文關鍵詞: permanent magnet, three-phase permanent-magnet generator, finite-element method, efficiency, harmonics
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究內容在於使用有限元素模擬軟體FLUX 2D,修改三相永磁發電機鐵心以及永久磁石之材料特性、尺寸、結構等參數,以達到提升三相永磁發電機整體運轉效率之目標。
    本論文中將對三相永磁發電機:(a)鐵心及永久磁石之磁化特性、尺寸做改良;(b)連接不同電阻性負載及整流電路特性之影響;(c)在不同轉速下之電壓、電流、輸出功率、效率及諧波的影響;(d)在特殊故障下的影響;(e)整體運轉效率的影響等為研究項目。
    在本論文中,將以FLUX 2D軟體建構永磁發電機之幾何圖形,並調整各種不同的電機參數,例如永磁發電機厚度、定子齒尖長度、定子材料、永久磁石材料、定子與轉子之間的氣隙長度等,以求出最高效率的改良尺寸及材料數據,未來可利用這些重要的參考資料來生產高品質、高效率、低鐵損特性之三相永磁發電機。

    The aim of this thesis is to modify the size, structure, and material characteristics of iron core and permanent magnet of a three-phase permanent-magnet generator (PMG) using simulation software FLUX 2D based on finite-element method (FEM) to achieve higher operating efficiency.
    This thesis studies the following items of a three-phase PMG: (a) improvement of size and magnetization characteristic of iron core and permanent magnet, (b) the influence of different resistive loads and rectifier circuits, (c) the influence of voltage, current, output power, efficiency, and harmonics under different rotational speeds, (d) the influence under a special fault, (e) the influence of operating efficiency, etc.
    In this thesis, the electromagnetic-field simulation software FLUX 2D is employed to build geometric structure of the studied PMG and adjust different machine parameters such as the thickness of PMG, length of stator tooth, stator material, permanent-magnet material, air-gap length between the stator and rotor, etc. to obtain the highest operation efficiency. In the future, these important parameters can be utilized to manufacture three-phase PMG with higher quality, lower core loss, and higher efficiency.

    頁次 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 符號表 XIII 第一章 緒論 1 1-1 研究目的 1 1-2 文獻回顧 1 1-3 研究內容概述 11 1-4 本論文貢獻 14 第二章 FLUX 2D電磁模擬軟體之簡介 15 2-1 前言 15 2-2 有限元素法簡介 15 2-2-1 電磁場的統御方程式 17 2-2-2 能量極小定理及能量泛函 20 2-2-3 元素方程式的推導 23 2-3 FLUX 2D軟體簡介 27 2-4 FLUX 2D之設計程序 28 2-5 本章結論 36 第三章 三相永磁發電機之有限元素模型建立 37 3-1 前言 37 3-2 建立三相永磁發電機模型之步驟與方法 37 3-3 永磁發電機的模擬結果 42 3-4 本章結論 44 第四章 三相永磁發電機之效率提升分析 45 4-1 前言 45 4-2 改變發電機的定子鐵心厚度 45 4-3 改變定子齒尖長度 47 4-4 改變定子鐵心材料 50 4-5 改變永久磁石材料 55 4-6 改變定子與轉子間的空氣隙長度 57 4-7 三相永磁發電機經改善後的最大效率 59 4-8 本章結論 61 第五章 三相永磁發電機之負載特性分析 62 5-1 前言 62 5-2 三相平衡負載變動 62 5-3 三相不平衡負載變動 64 5-4 三相永磁發電機連接二極體橋式整流器電路之特性 分析 66 5-5 本章結論 69 第六章 三相永磁發電機在不同轉速下之特性分析 70 6-1 前言 70 6-2 改變轉速對永磁發電機之穩態分析 70 6-3 永磁發電機於低速運轉時之諧波分析 72 6-3-1 轉速為50 rpm之諧波分析 72 6-3-2 轉速為30 rpm之諧波分析 75 6-3-3 轉速為10 rpm之諧波分析 77 6-4 本章結論 80 第七章 三相永磁發電機之特殊故障分析 82 7-1 前言 82 7-2 永久磁石缺角 82 7-2-1 右方永久磁石發生缺角 82 7-2-2 上方永久磁石發生缺角 84 7-3 定子繞組匝間短路故障 85 7-3-1 線圈繞組編號為48及1、2及3、4及5發生匝間短 路故障 87 7-3-2 線圈繞組編號為6及7、28及29、38及39發生匝 間短路故障 95 7-4 本章結論 100 第八章 結論與未來研究方向 101 參考文獻 103 作者簡介 106 自傳 107

    [1] C. N. Ashtiani and J. Vaidya, “Design evaluation of a high-speed permanent magnet generator for load performance by finite elements,” IEEE Transactions on Magnetics, vol. 22, no. 2, pp. 825-827, September 1986.
    [2] Z. Jiang and X. Mu, “Finite element analysis and calculation of magnetostatic fields in the end-region of aeronautical permanent magnet machines,” IEEE Transactions on Magnetics, vol. 24, no. 1, pp. 556-558, January 1988.
    [3] R. Krishnan and G. H. Rim, “Modeling, simulation, and analysis of variable-speed constant frequency power conversion scheme with a permanent magnet brushless dc generator,” IEEE Transactions on Industrial Electronics, vol. 37, no. 4, pp. 291-296, August 1990.
    [4] A. A. Arkadan, R. Vyas, J. G. Vaidya, and M. J. Shah, “Effect of toothless stator design on core and stator conductors eddy current losses in permanent magnet generators,” IEEE Transactions on Energy Conversion, vol. 7, no. 1, pp. 231-237, March 1992.
    [5] T. F. Chan and L. T. Yan, “Analysis and performance of a surface-mounted NdFeB permanent-magnet AC generator,” Fourth International Advances in Power Systems Control, Operation and Management Conference, vol. 2, no. 450, pp. 718-722, November 1997.
    [6] E. Muljadi, C. P. Butterfield, and Y. H. Wan, “Axial flux, modular, permanent-magnet generator with a toroidal winding for wind turbine applications,” IEEE Industry Applications Conference, vol. 1, no. 1, pp. 174-178, May 1998.
    [7] E. Muljadi, C. P. Butterfield, and Y. H. Wan, “Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications,” IEEE Transactions on Industry Applications, vol. 35, no. 2, pp. 831-836, July-August 1999.
    [8] J. Rizk and M. Nagrial, “Design of permanent-magnet generators for wind turbines,” in Proceedings Power Electronics and Motion Control Conference, vol. 1, no. 2, pp. 208-212, March 2000.
    [9] J. Chen, C. V. Nayar, and L. Xu, “Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines,” IEEE Transactions on Magnetics, vol. 36, no. 2, pp. 3082-3089, September 2000.
    [10] F. B. Reiter, K. Rajashekara, and R. J. Krefta, “Salient pole generators for belt-driven automotive alternator applications,” IEEE Industry Applications Conference, vol. 1, no. 1, pp. 437-422, April 2001.
    [11] G. Tsekouras, S. Kiartzis, A. G. Kladas, and J. A. Tegopoulos, “Neural network approach compared to sensitivity analysis based on finite element technique for optimization of permanent magnet generators,” IEEE Transactions on Magnetics, vol. 37, no. 3, pp. 3618-3621, September 2001.
    [12] A. J. Mitcham and J. J. A. Cullen, “Permanent magnet generator options for the more electric aircraft,” International Power Electronics Machines and Drives Conference, no. 487, pp. 241-245, May 2002.
    [13] M. V. Ferreira da Luz, P. Dular, N. Sadowski, C. Geuzaine, and J. P. A. Bastos, “Analysis of a permanent magnet generator with dual formulations using periodicity conditions and moving band,” IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 961-964, March 2002.
    [14] J. Wang, W. Wang, G. W. Jewell, and D. Howe, “A low-power, linear, permanent-magnet generator/energy storage system,” IEEE Transactions on Industrial Electronics, vol. 49, no. 6, pp. 640-648, June 2002.
    [15] T. F. Chan, L. T. Yan, and L. L. Lai, “Performance of a permanent-magnet AC generator with rotor inverse saliency,” International Electrical Machines and Systems Conference, vol. 1, no. 2, pp. 45-48, November 2003.
    [16] P. Van Tichelen and E. Peeters, “Design of a new axial flux permanent magnet generator for hybrid electric vehicles,” IEEE Vehicular Technology Conference, vol. 5, no. 1, pp. 3192-3196, October 2003.
    [17] T. F. Chan, L. L. Lai, and L. T. Yan, “Performance of a three-phase AC generator with inset NdFeB permanent-magnet rotor,” IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 88-97, March 2004.
    [18] P. H. Mellor, S. G. Burrow, T. Sawata, and M. Holme, “A wide-speed-range hybrid variable-reluctance/permanent-magnet generator for future embedded aircraft generation systems,” IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 551-556, March-April 2005.
    [19] O. Danielsson, M. Leijon, and E. Sjostedt, “Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 2490-2495, September 2005.
    [20] Y. Chen, P. Pillay, and A. Khan, “PM wind generator topologies,” IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1619-1626, November-December 2005.
    [21] FLUX 3D, FLUX 3D application permanent magnet machine technical paper, May 2004.

    下載圖示 校內:2009-08-08公開
    校外:2010-08-08公開
    QR CODE