| 研究生: |
施易良 Shih, Yi-Liang |
|---|---|
| 論文名稱: |
調整拉哥朗日乘數以實現影像編碼之位元率控制 Adjustment of Lagrange Multiplier for Video Coding Rate Control |
| 指導教授: |
郭致宏
Kuo, Chih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 隨機次梯度法 、位元率控制 、拉哥朗日乘數 、位元率失真度最佳化 |
| 外文關鍵詞: | Stochastic subgradient method, rate control, Lagrange multiplier, rate-distortion optimization |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,提出一套改進後的位元率控制演算法流程,利用stochastic subgradient method動態地調整拉哥朗日乘數λ。以合適的λ值在位元失真最佳化過程才能選擇到最佳的編碼方式。利用修正後的λ值決定每一個編碼區塊的最佳量化參數,我們提出一個對數型態的QP-λ線性模型,根據λ預測編碼區塊的量化參數,並以較小的搜尋範圍找出最佳量化參數,取代搜尋所有量化參數造成的龐大計算負擔。基於上述兩種方法我們提出一套區塊層級的位元率控制流程,在每次編碼完成後,使用實際產生的位元量來更新下一塊編碼區塊的λ值。我們所提出的演算法修改在H.264/AVC的參考軟體並與之比較,實驗結果證明不論在CIF和HD1080p格式的測試影像,提出的演算法皆能提升編碼器的R-D performance,並且降低輸出位元率與目標位元率之間的誤差,準確地控制編碼後產生的位元率。此外,我們提出的方法能以較簡單的模型和計算來決定量化參數和拉哥朗日乘數,不僅提升編碼表現,更降低整體編碼時間。
In this paper we propose to improve the performance of the rate control mechanism in video encoders by adaptively adjusting the Lagrange multiplier λ based on the stochastic subgradient method. Using this λ value for each coding unit, the quantization parameter is sought in the process of rate-distortion optimization. A log-linear model can be utilized to predict the most probable quantization parameter and accordingly narrow the search range. The generated bit number is used to update the λ-value for the next coding unit. Extensive experimental results show that the proposed rate control mechanism significantly enhances the rate-distortion performance compared to the H.264/AVC reference software in CIF and HD1080p format sequences. The error between output bit rate and target one is reduced, which proves proposed method controls the bit rate accurately. In addition, the proposed method determines the quantization parameter and Lagrange multiplier easily by a simple model and computations, which further reduces the encoding time.
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, Jul.2003.
[2] Z. G. Li, F. Pan, K. P. Lim, G. Feng, X. Lin, and S. Rahardja, “Adaptive basic unit layer rate control for JVT,” presented at the 7th JVT Meeting, Pattaya II JVT-G012-rl Thailand, Mar. 2003.
[3] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 23-50, Nov. 1998.
[4] Test Model 5, ISO-IEC/JTC1/SC29/WG11/N0400, Apr. 1993.
[5] Coding of Moving Pictures and Associated Audio MPEG 97/W1796, ISO/IEC 14496-2 MPEG4 Video VMVersion 8.0, ISO/IEC JTC1/SC29/WG11, Video Group, Stockholm, Sweden, 1997.
[6] Video Codec Test Model Near-Term, Version 8 (TMN8), ITU Telecom. Standardization Sector of ITU, H.263 Ad Hoc Group, Jun. 1997.
[7] H. Choi, J. Nam, J. Yoo, D. Sim, and I. V. Bajić, “Rate control based on unified
RQ model for HEVC,” JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCT-VC H0213 (m23088), San José, CA, USA, Feb. 2012
[8] Z. G. Li, F. Pan, K. P. Lim, X. Lin, and S. Rahardja, “Adaptive rate control for H.264,” in Proc. IEEE Int. Conf. Image Process., Oct. 2004, pp. 745-748.
[9] T. Chiang and Y. Zhang, “A new rate control scheme using quadratic
rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,
no. 1, pp. 246–250, Feb. 1997.
[10] A. Vetro, H. Sun, and Y. Wang, “MPEG-4 rate control for multiple video objects,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 1, pp. 186–199, Feb. 1999.
[11] H. J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for MPEG-4 video,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 6, pp. 878–894, Sep. 2000.
[12] Berger, Rate Distortion Theory, Prentice Hall, 1971.
[13] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74-90, Nov. 1998.
[14] K.-P. Lim, G. Sullivan, and T. Wiegand, “Text description of joint model reference encoding methods and decoding concealment methods,” JVT of ISO/IEC MPEG and ITU-T VCEG, JVT-N046, Hongkong, CN, Jan. 2005
[15] Z. Liu, D. Wang, J. Zhou, and T. Ikenaga, “Lagrangian multiplier optimization using correlations in residues,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2012, pp. 1185-1188.
[16] X. Li, N. Oertel, A. Hutter, and A. Kaup, “Laplace distribution based Lagrangian rate distortion optimization for hybrid video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 193-205, Feb. 2009.
[17] N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Frame bit allocation for the H.264/AVC video coder via Cauchy-density-based rate and distortion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, pp. 994-1006, May 2005.
[18] S. R. Sergio, A. E. scar, F. L. Manuel, and D. M. Fernando, “Cauchy density-based basic unit layer rate controller for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 8, pp. 1139-1143, Aug. 2010.
[19] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the H.264 video coder,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 2004, vol. 3, pp. III-177-80.
[20] M. Jiang and N. Ling, “On Lagrange multiplier and quantizer adjustment for H.264 frame-layer video rate control,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 5, pp. 663-669, May 2006.
[21] M. Jiang and N. Ling, “An improved frame and macroblock layer bit allocation scheme for H.264 rate control,” in IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2, pp. 1501-1504, May 2005.
[22] C. Pang, O. C. Au, H. Dai, and F. Zou, “Frame complexity guided Lagrange multiplier selection for H.264 intra-frame coding,” IEEE Signal Process. Lett., vol. 18, no. 12, pp. 733-736, Dec. 2011.
[23] D. K. Kwon, M. Y. Shen, and C. C. J. Kuo, “Rate control for H.264 video with enhanced rate and distortion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 5, pp. 517-529, May 2007.
[24] Z. He, Y. Kim, and S. K. Mitra, “A novel linear source model and a unified rate control algorithm for H.263/MPEG-2/MPEG-4,” presented at the Int. Conf. Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 2001.
[25] Z. He, Y. Kim, and S. K. Mitra, “Low-delay rate control for DCT video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 8, pp. 928-940, Aug. 2001.
[26] Z. He and S. K. Mitra, “A linear source model and a unified rate control algorithm for DCT video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 11, pp. 970-982, Nov. 2002.
[27] Z. He and S. K. Mitra, “Optimum bit allocation and accurate rate control for video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 10, pp. 840-849, Oct. 2002.
[28] JVT, H.264/AVC Reference Software (JM18.4), Aug. 2012 [Online].
Available: http://iphome.hhi.de/suehring/tml/
[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.
[30] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,” ITU-T SC16/Q6, Doc. VCEG-M33, Apr. 2001.