簡易檢索 / 詳目顯示

研究生: 賴韋伶
Lia, Wei-Ling
論文名稱: 三乙醇胺錯合劑促助電沉積二硒化銀銦與銀銅銦硒薄膜
Facilitated electrodepositon of AgInSe2 and (Ag,Cu)InSe2 thin films by triethanolamine complexing agent
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 電沉積二硒化銀銦銀銅銦硒三乙醇胺錯合劑
外文關鍵詞: electrodeposition, AgInSe2, (Ag,Cu)InSe2, triethanolamine, complexing agent
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電沉積法,以三乙醇胺(Triethanolamine,TEA)錯合劑,成功製備出二硒化銀銦(AgInSe2)與銀銅銦硒((Ag,Cu)InSe2)化合物。實驗變因包含:電沉積的電位與時間、TEA濃度、pH值、銀離子與銅離子濃度、退火溫度。研究中第一部分為沉積二硒化銀銦(AgInSe2),探討不同銀離子下所得到的產物組成。在低還原電位下,易形成Ag2Se二元相化合物,隨著電壓提高至-1.0 V,AgInSe2薄膜主要優選方向為(112)面方向,與XRD結果相一致。SEM觀察表面形貌,低還原電位下薄膜呈現圓球狀,高還原電位下薄膜表面分布均勻成樹枝狀。最後利用紫外光/可見光/近紅外光光譜儀進行光學性質分析,得到退火後的AgInSe2具有高光學係數(104 cm-1以上)。結果顯示,電沉積最佳化條件:7 mM AgNO3 + 10 mM In2(SO4)3.9H2O + 40 mM SeO2 + 0.2 M TEA,沉積時間20 min,退火溫度280 °C,薄膜能隙值1.23 eV。
    研究中第二部分為銀銅銦硒(Ag,Cu)InSe2化合物的沉積,調整改變[Cu]/[Ag]比例得到所想要的組成,加入銅原子取代原有銀原子佔有位後,XRD分析中AgInSe2的(112)面繞射峰消失,反而出現CuInSe2的(112)面繞射峰,隨著CuSO4.5H2O濃度的增加及還原電壓的提升,繞射峰強度明顯增強,同時薄膜形貌分析上,更趨近於花椰菜結構。(Ag,Cu)InSe2的吸收係數與能隙值小於AgInSe2。

    We successfully fabricated AgInSe2 and (Ag,Cu)InSe2 thin films by triethanolamine complexing agent using electrodeposition method. The parameters include:deposition potential and time in electrodeposition, concentration of TEA, pH value, concentration of silver ions and copper ions, annealing temperature. For the first study, AgInSe2 have been prepared to identify concentrations of silver ion could be obtained composition of product. With lower reduction potential was easy to form a binary compound Ag2Se. The main preferred orientations of AgInSe2 is (112) as the applied potential increased to -1.0 V, this result is consistent to that from XRD. The surface morphology of AgInSe2 was observed by SEM, thin films revealed sphere shape with lower reduction potential and uniformly distributed dendrimer structures with higher reduction potential. Finally, the absorption coefficient of AgInSe2 were analyzed by using UV/VIS/NIR spectra, this work obtained AgInSe2 thin films with high absorption coefficient (above about 104 cm-1) after annealed. This results showed an optimum deposition condition: 7 mM AgNO3 + 10 mM In2(SO4)3.9H2O + 40 mM SeO2 + 0.2 M TEA, electrodeposition time was 20 min, annealing temperature at 280 °C, the value of band gap was 1.23 eV.
    For the second study, (Ag,Cu)InSe2 thin film was electrodeposited with various [Cu]/[Ag] to adjust composition wanted. When occupies of Ag were substituted after Cu were added to it, XRD analysis of AgInSe2 diffraction peak on (112) plane has disappeared instead of CuInSe2 diffraction peak on (112) plane. With concentrations of CuSO4.5H2O and the reduction potential increased that the diffraction peaks intensity became obviously stronger, and morphologies analysis of thin films were like to cauliflower structures. The absorption coefficient and band gap of (Ag,Cu) InSe2 thin films were less than AgInSe2.

    摘要 I Extend abstract II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池的簡介 2 1.2.1 太陽光頻譜照度 2 1.2.2 太陽能電池種類 3 1.2.3 太陽能電池工作原理 4 第二章 理論背景與文獻回顧 7 2.1 半導體簡介 7 2.1.1 半導體的能帶理論 7 2.1.2 半導體的種類 8 2.2 二硒化銀銦(AgInSe2)與銀銅銦硒((Ag,Cu)InSe2)薄膜之簡介 9 2.3 薄膜成長機制 11 2.4 半導體薄膜製備方法 12 2.4.1 化學氣相沉積法(Chemical Vapor Deposition,CVD) 12 2.4.2 物理氣相沉積法(Physical Vapor Deposition,PVD) 14 2.4.3 蒸鍍(Evaporation) 14 2.4.4 濺鍍(Sputtering) 15 2.4.5 化學水浴沉積法(Chemical Bath Deposition,CBD) 16 2.4.6 原子層磊晶法(Atomic Layer Epitaxy,ALE) 17 2.4.7 電化學沉積(Electrochemical Deposition,ED) 18 2.5 電化學分析 19 2.5.1 循環伏安法(Cyclic Voltammetry,CV) 19 2.5.2 定電流電解法(Chronopotentiometry,CP) 19 2.5.3 定電位電解法(Chronoamperometry,CA) 21 2.5.4 低電位沉積(Underpotential Deposition,UPD) 22 2.6 共沉積液電位及pH值選擇 22 2.7 研究動機 24 第三章 實驗步驟與方法 26 3.1 實驗藥品與裝置 27 3.2 實驗步驟與方法 28 3.2.1 清洗基材 28 3.2.2 電沉積液的配製 28 3.2.3 電沉積AgInSe2與(Ag,Cu)InSe2薄膜 29 3.2.4 薄膜的後處理 29 3.3 薄膜特性分析量測 30 3.3.1 X光粉末繞射儀(X-ray diffractometer,XRD) 30 3.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 30 3.3.3 能量散射光譜儀(Energy Dispersive Spectroscopy,EDS) 31 3.3.4 紫外光/可見光/近紅外光光譜儀(UV-VIS-NIR Spectrophotometer) 31 第四章 結果與討論 32 4.1 循環伏安法(Cyclic Voltammetry) 32 4.1.1 單一元素銀(Ag)之循環伏安法分析 32 4.1.2 單一元素銦(In)之循環伏安法分析 36 4.1.3 單一元素硒(Se)之循環伏安法分析 38 4.1.4 三元素AgInSe2之循環伏安法分析 41 4.2 影響沉積薄膜之因素 42 4.2.1 改變pH值對薄膜組成之影響 42 4.2.2 改變TEA濃度對薄膜組成之影響 43 4.2.3 改變離子相對濃度對薄膜組成之影響 44 4.3 沉積電位對AgInSe2薄膜之影響 45 4.3.1 沉積電位對薄膜晶格結構之影響 45 4.3.2 沉積電位對薄膜組成之影響 52 4.3.3 不同沉積電位下之薄膜表面形貌分析 53 4.3.4 不同沉積電位下之UV-VIS-NIR 56 4.3.5 不同沉積電位下之吸收係數 59 4.3.6 不同沉積電位下之電子能隙 62 4.4 退火溫度對AgInSe2薄膜之影響 66 4.4.1 不同退火溫度下對薄膜晶格結構與組成之影響 66 4.4.2 不同退火溫度下之表面形貌分析 70 4.5 沉積時間對AgInSe2薄膜之影響 73 4.5.1 沉積時間對薄膜晶格結構之影響 73 4.5.2 沉積時間對薄膜組成之影響 76 4.5.3 不同沉積時間下之薄膜表面形貌分析 77 4.5.4 不同沉積時間下之UV-VIS-NIR 79 4.5.5 不同沉積時間下之吸收係數 81 4.5.6 不同沉積時間下之電子能隙 84 4.6 電沉積(Ag,Cu)InSe2薄膜 87 4.6.1 沉積電位對薄膜晶格結構與組成之影響 87 4.6.2 不同沉積電位下之表面形貌分析 91 4.6.3 改變[Cu]/[Ag]相對濃度下之UV-VIS-NIR 95 4.6.4 改變[Cu]/[Ag]相對濃度下之電子能隙 97 第五章 結論 100 參考文獻 102 附錄 108

    1. D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, pp. 676-677, 1954.
    2. S. Bailey and R. Raffaelle, "Space solar cells and arrays," Handbook of Photovoltaic Science and Engineering, pp. 413-448, 2003.
    3. E. Trybus, Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applications, p. 6, 2009.
    4. B. L., Oliva-Chatelain., and A. R.Barron, "An Introduction to Solar Cell Technology," p. 2, 2011.
    5. R. Gross and A. Marx, Festkörperphysik De Gruyter, 2014.
    6. K. Chopra, P. Paulson, and V. Dutta, "Thin-film solar cells: an overview," Progress in Photovoltaics, vol. 12, pp. 69-92, 2004.
    7. semiconductor device: Encyclopedia Britannica, 2004.
    8. P. Hersch and K. Zweibel, "Basic photovoltaic principles and methods," Solar Energy Research Inst., Golden, CO (USA)1982.
    9. M. N.-U.-R. Chowdhury, "Technical and economic analysis of a novel asymmetric PVT hybrid solar collector," renewable energy, 2013.
    10. D. M. Sandros, "Nanochemistry,NAN 601," Joint school of nanoscience and nanoengineering, 2011.
    11. S. O. Kasap, "Optoelectronics and Photonics: Principles and Practices. 2001," ed: Prentice-Hall, New Jersey.
    12. D. Abdel-Hady and A. Salem, "Electrical resistivity of AgInSe2 films," Physica A: Statistical Mechanics and its Applications, vol. 242, pp. 141-149, 1997.
    13. Y.-J. Zhao, C. Persson, S. Lany, and A. Zunger, "Why can CuInSe2 be readily equilibrium-doped n-type but the wider-gap CuGaSe2 cannot?," Applied physics letters, vol. 85, pp. 5860-5862, 2004.
    14. T. Maeda, T. Takeichi, and T. Wada, "Systematic studies on electronic structures of CuInSe2 and the other chalcopyrite related compounds by first principles calculations," physica status solidi (a), vol. 203, pp. 2634-2638, 2006.

    15. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 894-897, 2011.
    16. M. S. Gaith and I. Alhayek, "Nano-mechanical evaluation of the heterojunction layers in solar photovoltaic cells," Rev. Adv. Mater. Sci, vol. 29, pp. 136-141, 2011.
    17. J. J. Lee, J. D. Lee, B. Y. Ahn, H. S. Kim, and K. H. Kim, "Structural and optical properties of AgInSe2 films prepared on indium tin oxide substrates," Journal of Korean Physical Society, vol. 50, p. 1099, 2007.
    18. P. P. Ramesh, O. M. Hussain, S. Uthanna, B. S. Naidu, and P. J. Reddy, "Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions," Materials Letters, vol. 34, pp. 217-221, 1998.
    19. M. Abdullaev, A. Alhasov, and D. K. Magomedova, "Fabrication and properties of CuInSe2/AgInSe2/CdS double heterojunction cascade solar cells," Inorganic Materials, vol. 50, pp. 228-232, 2014.
    20. F. MAHMOUD and M. Sayed, "Preparation and characterization of sprayed AgInSe2 thin films," Chalcogenide Letters, vol. 8, pp. 595-600, 2011.
    21. Y. Ema and N. Harakawa, "Formation and properties of AgInSe2 thin films deposited from alloy chunks," Japanese journal of applied physics, vol. 34, p. 3260, 1995.
    22. H. Matsuo, K. Yoshino, and T. Ikari, "Preparation of AgInSe2 thin films grown by vacuum evaporation method," physica status solidi (c), vol. 3, pp. 2644-2647, 2006.
    23. D. Pathak, R. K. Bedi, and D. Kaur, "Growth of AgInSe2 on Si(100) substrate by thermal evaporation technique," Applied Physics A, vol. 95, pp. 843-847, 2009.
    24. S. Patel and A. Patel, "Growth of AgInSe2 thin films," Thin Solid Films, vol. 111, pp. 53-58, 1984.
    25. K.-W. Cheng and C.-H. Yeh, "Ternary AgInSe2 film electrode created using selenization of RF magnetron sputtered Ag–In metal precursor for photoelectrochemical applications," International Journal of Hydrogen Energy, vol. 37, pp. 13638-13644, 2012.
    26. M. Ait Aouaj, "AgInSe2 Thin Films Prepared by Electrodeposition Process," International Journal of Materials Science and Applications, vol. 4, p. 35, 2015.

    27. K.R.Murali, "Pulse plated AgInSe2 films and their photoelectrochemical behaviour," International Journal of Latest Research in Science and Technology, vol. 3, pp. 84-89, 2014.
    28. Y. Ueno, Y. Kojima, T. Sugiura, and H. Minoura, "Electrodeposition of AgInSe2 films from a sulphate bath," Thin Solid Films, vol. 189, pp. 91-101, 1990.
    29. V. Gremenok and I. Viktorov, "Optical Properties of Films of CuxAg1− xInSe2 Solid Solutions Obtained by Laser Evaporation," Journal of Applied Spectroscopy, vol. 69, pp. 413-417, 2002.
    30. T. Begou, S. Little, A. Aquino, V. Ranjan, A. Rockett, R. Collins, S. Marsillac, "In situ and ex situ characterization of (Ag,Cu)InSe2 thin films," in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000326-000328.
    31. S. A. Little, V. Ranjan, R. W. Collins, and S. Marsillac, "Growth analysis of (Ag,Cu)InSe2 thin films via real time spectroscopic ellipsometry," Applied Physics Letters, vol. 101, p. 231910, 2012.
    32. V. Gremenok, I. Bodnar, I. Martil, F. Martines, S. Sergeev-Nekrasov, and I. Victorov, "Growth and characterization of CuxAg1-xInSe2 thin films by pulsed laser deposition," Solid State Phenomena, vol, 67-68, pp. 361-366, 1999.
    33. A. Aquino Gonzalez, Physical and optoelectronic properties of copper silver indium diselenide thin films: University of Illinois at Urbana-Champaign, 2012.
    34. R. C. Jaeger, "Introduction to Microelectronic Fabrication," Auburn University, 2002
    35. S. A. Bashar, "Study of indium tin oxide (ITO) for novel optoelectronic devices," UMIST, Manchester, pp. 106-109, 1998.
    36. "Magnetron Sputtering Technology," ed: Micro Magnetics, Inc, Retrieved June.
    37. L. Moreno, J. Sandino, N. Hernandez, and G. Gordillo, "pH effect on the deposition of CdS on ZnO and SnO2: F substrates by CBD method," physica status solidi (b), vol. 220, pp. 289-292, 2000.
    38. C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M. Muller, et al., "Chemical bath deposition of indium sulphide thin films: preparation and characterization," Thin Solid Films, vol. 340, pp. 18-23, 2/26/ 1999.
    39. P. O'Brien and J. McAleese, "Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS," J. Mater. Chem., vol. 8, pp. 2309-2314, 1998.

    40. C. Lokhande, P. Patil, H. Tributsch, and A. Ennaoui, "ZnSe thin films by chemical bath deposition method," Solar Energy Materials and solar cells, vol. 55, pp. 379-393, 1998.
    41. M. Z. Najdoski and T. Todorovski, "A simple method for chemical bath deposition of electrochromic tungsten oxide films," Materials Chemistry and Physics, vol. 104, pp. 483-487, 2007.
    42. M. Robinson, A. Bernard, M. Julius, R. Marin, F. Konstantinos, and L.-S. Martha, "Effect of Recombination on Series Resistance in eta Solar Cell Modified with In(OH)xSy Buffer Layer," International Journal of Energy Engineering, vol. 3, pp. 183-189, 2013.
    43. A. R. Barron, Atomic Layer Deposition, 2009.
    44. "CEM 372 Spring 2000 Cyclic voltammetry Lab Primer," Michigan State University.
    45. J. Heinze, "Cyclic Voltammetry—“Electrochemical Spectroscopy”. New Analytical Methods (25)," Angewandte Chemie International Edition in English, vol. 23, pp. 831-847, 1984.
    46. A. W. Bott, "Controlled Current Techniques," epsilon, vol. 47906, p. 1382, 2000.
    47. A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
    48. G. Ferrari, "Nanoscale electrochemistry," Dipartimento di elettronica, informazione e bioingegneria,Politecnico di Milano, 2014.
    49. G. Kokkinidis, "Underpotential deposition and electrocatalysis," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 201, pp. 217-236, 4/25/ 1986.
    50. E. Budevski, G. Staikov, and W. Lorenz, Electrochemical phase formation and growth, 2008.
    51. D. M. Kolb, M. Przasnyski, and H. Gerischer, "Underpotential deposition of metals and work function differences," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 54, pp. 25-38, 7/25/ 1974.
    52. M. M. Walczak, D. A. Dryer, D. D. Jacobson, M. G. Foss, and N. T. Flynn, "pH Dependent Redox Couple: An Illustration of the Nernst Equation," Journal of chemical education, vol. 74, p. 1195, 1997.
    53. N. Takeno, "Atlas of Eh-pH diagrams," Geological survey of Japan open file report, vol. 419, p. 102, 2005.
    54. K. G. Deepa, N. Lakshmi Shruthi, M. Anantha Sunil, and J. Nagaraju, "Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics," Thin Solid Films, vol. 551, pp. 1-7, 1/31/ 2014.
    55. M. Omar, A. Nadhir, B. Assia, and A. Mohamed Salah, "Electrodeposition and Characterization of Cu(In,Al)Se2 for Applications in Thin Film Tandem Solar Cells," Materials Sciences and Applications, vol. 2013, 2013.
    56. R. N. Bhattacharya, J. Granata, W. Batchelor, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, R. N. Noufi, J. R. Sites, "CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited precursors," International Society for Optics and Photonics, pp. 90-95, 1997.
    57. J. Drenth, X‐Ray Crystallography: Wiley Online Library, 2007.
    58. M. F. Peyronel and A. G. Marangoni, "Section 1: X-raypowder diffractometry(XRD)," ed, Retrieved June,2015.
    59. M. Watt-Smith, J. Friedrich, S. Rigby, T. Ralph, and F. Walsh, "Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates," Journal of Physics D: Applied Physics, vol. 41, p. 174004, 2008.
    60. A. Mondal, T. Chaudhuri, and P. Pramanik, "Deposition of cadmium chalcogenide thin films by a solution growth technique using triethanolamine as a complexing agent," Solar Energy Materials, vol. 7, pp. 431-438, 1983.
    61. Y.-S. Chiu, M.-T. Hsieh, C.-M. Chang, C.-S. Chen, and T.-J. Whang, "Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine," Applied Surface Science, vol. 299, pp. 52-57, 2014.
    62. Z. Jia, H. Sun, and Q. Gu, "Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 419, pp. 174-179, 2/20/ 2013.
    63. H. Poortavasoly, M. Montazer, and T. Harifi, "Simultaneous synthesis of nano silver and activation of polyester producing higher tensile strength aminohydroxylated fiber with antibacterial and hydrophilic properties," RSC Adv., vol. 4, pp. 46250-46256, 2014.

    64. B. Lovrecek and V. Markovac, "Studies of the Electrochemical Kinetics of Indium I. Kinetics of Deposition and Dissolution in the Indium+ Indium Sulfate System," Journal of The Electrochemical Society, vol. 109, pp. 727-731, 1962.
    65. 何宜璟, 許維中, 張家碩, 蔡水蜂, 王冠文, and 陳龍泉, "電沉積 AgInSe2 應用於敏化太陽能電池."
    66. C. Lokhande, A. Ennaoui, P. Patil, M. Giersig, K. Diesner, M. Muller, et al., "Chemical bath deposition of indium sulphide thin films: preparation and characterization," Thin Solid Films, vol. 340, pp. 18-23, 1999.
    67. S. Lugo, Y. Peña, M. Calixto-Rodriguez, C. López-Mata, M. L. Ramón, I. Gómez, et al., "Chemically deposited In2S3–Ag2S layers to obtain AgInS2 thin films by thermal annealing," Applied Surface Science, vol. 263, pp. 440-444, 2012.
    68. D. Pathak, R. Bedi, and D. Kaur, "Characterization of laser ablated AgInSe2 films," Materials Science-Poland, vol. 28, 2010.
    69. K.-C. Huang, C.-L. Liu, P.-K. Hung, and M.-P. Houng, "Cyclic Voltammetric Study and Nucleation of Electrodeposited Cu(In,Al)Se2 Thin Films with Sodium Dodecyl Sulfate Additive," Journal of The Electrochemical Society, vol. 160, pp. D125-D131, 2013.
    70. D. Gherouel, I. Gaied, and M. Amlouk, "Effect of heat treatment in air on physical properties of AgInS2 sprayed thin films," Journal of Alloys and Compounds, vol. 566, pp. 147-155, 2013.

    下載圖示 校內:2020-07-30公開
    校外:2020-07-30公開
    QR CODE