簡易檢索 / 詳目顯示

研究生: 簡偉倫
Chien, Wei-Lun
論文名稱: 化學機械研磨高介電常數奈米複合絕緣層有機薄膜電晶體之研究
A Study on CMP Processed High-k Nanocomposite Gate Dielectrics of Organic Thin-film Transistors
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: 有機薄膜電晶體化學機械研磨
外文關鍵詞: CMP, OTFT
相關次數: 點閱:70下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究包含兩個部分,第一個部分為製作摻雜TiO2奈米粉體之High-k有機無機複合絕緣層。我們首先確認有機絕緣層高分子材料PVP與其橋接劑PMCF之最佳混合比例,以製作出介電常數較高之有機絕緣層。而後我們摻雜TiO2奈米粉體於有機絕緣層,並改變TiO2奈米粉體之摻雜濃度。分析其電性表現,我們發現摻雜3 vol% TiO2奈米粉體之複合絕緣層具有較高的介電常數與較佳之漏電流控制。
    本研究的第二個部分為摻雜3 vol% TiO2奈米粉體複合絕緣層之表面平坦化處理。我們嘗試三種不同的表面處理方式:(1) 化學機械研磨 (2) 覆蓋緩衝層 (3) 化學機械研磨後再覆蓋緩衝層。經由實驗分析,我們發現複合絕緣層經由化學機械研磨後再覆蓋緩衝層之方式可得到最佳的效果。我們在此經過改善過後之複合絕緣層上,蒸鍍pentacene主動層以製作OTFTs元件。最後我們成功地製作出載子遷移率0.58 cm2/ Vs,臨界電壓 -4.3 V,以及開關電流比為6×103之OTFTs元件。

    This study consists of two parts. In the first part, we intend to fabricate high-k organic-inorganic composite dielectrics. First of all, we attempt to discover the best blending proportion of the cross-linking agent PMCF to PVP for fabricating organic polymer dielectrics of higher dielectric constant. Then we blend TiO2 nanoparticles into organic polymer dielectrics and adjust the concentration of blended TiO2 nanoparticles. By analyzing the electric performance, we find the composite dielectrics with 3 vol% TiO2 nanoparticles blended shows higher dielectric constant and lower leakage current.
    In the second part, we apply surface treatment to the composite dielectrics with 3 vol% TiO2 blended. We apply three methods of surface treatment : (1) Chemical Mechanical Polishing, CMP (2) Buffer layer (3) CMP + Buffer layer. We find that the composite dielectrics treated by CMP + Buffer layer performs best after analyzing the effect of the three methods of surface treatment. Then we deposit pentacene on the composite dielectrics of best performance by thermal deposition process to demonstrate OTFTs. We eventually demonstrate high performance OTFTs of mobility 0.58 cm2/ Vs, Vth -4.3 V, and on-off ratio 6×103.

    摘要 Abstract 致謝 目次 表目錄 圖目錄 第一章 序論…………………………………………………………………………1 1-1 前言……………………………………………………………1 1-2 研究動機與目的………………………………………………2 第二章 有機薄膜電晶體……………………………………………………………4 2-1 薄膜電晶體概論………………………………………………4 2-1-1 薄膜電晶體簡介…………………………………………4 2-1-2 薄膜電晶體操作原理……………………………………5 2-2 有機薄膜電晶體概論………………………………………………………9 2-2-1 有機薄膜電晶體發展與簡介……………………………9 2-2-2 有機半導體材料………………………………………………………9 2-2-3 有機薄膜電晶體結構…………………………………………………11 2-2-4 有機薄膜電晶體操作原理……………………………………………12 2-2-5 有機薄膜電晶體的基本公式及特性…………………………………15 2-2-6 金屬與半導體接面……………………………………………………20 2-3 五環素(Pentacene)材料特性………………………………………………22 2-3-1 Pentacene材料簡介……………………………………………………22 2-3-2 Pentacene分子結構……………………………………………………23 2-4 薄膜沉積原理……………………………………………………………….25 2-5 有機材料載子傳輸機制……………………………………………………27 2-5-1 Hopping………………………………………………………………...29 2-5-2 Multiple Trapping and Release…………………………………………30 2-6 有機-無機奈米材料複合絕緣層…………………………………………30 2-6-1 應用背景……………………………………………………………….30 2-6-2 應用原理……………………………………………………………….31 2-7 PVP (Poly-(4-vinylphenol))性質介紹………………………………………32 2-8 TiO2奈米粉體性質介紹……………………………………………………34 第三章 化學機械研磨………………………………………………36 3-1 化學機械研磨簡介…………………………………………………………36 3-2 化學機械研磨與機制………………………………………………………38 3-2-1 化學機械研磨機制……………………………………………………38 3-2-2 化學機械研磨製程……………………………………………………38 3-3 化學機械研磨製程參數……………………………………………………39 3-4 研磨墊………………………………………………………………………40 3-5 研磨液………………………………………………………………………42 3-6 磨後清洗……………………………………………………………………44 第四章 實驗架構…………………………………………………………………46 4-1 實驗規劃……………………………………………………………………46 4-2 元件結構……………………………………………………………………48 4-3 實驗材料……………………………………………………………………48 4-4 實驗流程……………………………………………………………………49 4-4-1 玻璃基板之準備………………………………………………………49 4-4-2 複合絕緣層製作………………………………………………………50 4-4-3 化學機械研磨(CMP)及緩衝層(Buffer layer)…………………………51 4-4-4 有機主動層製作………………………………………………………52 4-4-5 金屬電極製作…………………………………………………………53 4-5 實驗儀器……………………………………………………………………54 4-5-1 製程儀器 ………………………………………………54 4-5-2 分析儀器 ………………………………………………55 第五章 實驗結果與討論 …………………………………………………………58 5-1 有機無機複合絕緣層實驗及分析…………………………………………58 5-1-1 PVP摻雜不同比例PMCF實驗………………………………………58 5-1-2 摻雜不同濃度TiO2奈米粉體之複合絕緣層實驗……………………59 5-2 複合絕緣層表面平坦化實驗結果分析……………………………………66 5-2-1 複合絕緣層表面平坦化改善…………………………………………66 5-2-2 複合絕緣層表面平坦化實驗結果及AFM分析………………………69 5-2-3 複合絕緣層表面接觸角與表面能……………………………………74 5-2-4 複合絕緣層表面FTIR分析……………………………………………76 5-3 pentacene有機主動層分析…………………………………………………77 5-3-1 pentacene薄膜XRD分析……………………………………………77 5-3-2 pentacene薄膜成長機制探討…………………………………………79 5-4 OTFTs元件分析……………………………………………………………85 5-4-1 OTFTs元件電性量測…………………………………85 5-4-2 OTFTs元件電性探討…………………………………92 第六章 結論與未來展望……………………………………………94 6-1 結論…………………………………………………………………………94 6-2 未來展望……………………………………………………………………94 參考文獻……………………………………………………………95

    [1] Fang-Chung Chen, Chiao-Shun Chuang, Yung-Sheng Lin, Li-Jen Kung, Tung-Hsien Chen, Han-Ping D. Shieh, "Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics, " Organic Electronics 7 (2006) 435–439
    [2] J.H. Schan. et. al. "On the Intrinsic Limits of Pantacene Fieldeffet
    Transistors", Organic Electronic, Vol. 1, No. 1, p.57.
    [3] Gilles Horowitz, "Organic Field-Effect Transistors" Adv. Mater., No.5, 10, (1998)
    [4] C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film 2) Henning Sirrintransistors: A review of recent advances,” IBM J. RES. & DEV.2001, VOL. 45, NO. 1.
    [5] 施敏,"半導體元件物理與製作技術" ,國立交通大學出版社,2002
    [6] Christos D. Dimitrakopoulos, and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater. 2002, 14, No. 2
    [7] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device:field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. 49,1210 (1986).
    [8] H. Koezuka, A. Tsumura, and T. Ando, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Synth. Met. 18, 699 (1987).
    [9] H. Koezuka, A. Tsumura, and T. Ando, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Synth. Met. 18, 699 (1987).
    [10] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, "Organic Vapor Phase Deposition" Adv. Mater. 10, No. 18, (1998)4. Semiconductor Devices Physics and Technology/S.M. SZE
    [11] Peter V. Necliudov, Michael S. Shur , David J. Gundlach, Thomas N. Jackson, ”Contact resistance extraction in pentacene thin film transistors” Solid-State Electronics, 47, pp.259-262, (2003)
    [12] Donald A. Neamen,” Fundamentals of Semiconductor Physics and Devices”, 3rd ed., McGraw Hill, (2005)
    [13] N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, “Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism” Appl. Phys. Lett., Vol.82, pp.70-73, (2003).
    [14] E. M. Suuberg, “Vapor pressures and enthalpies of solution of polycyclic aromatic hydrocarbons and theirderivatives," J. Chem. Eng. Data, vol.43, no. 3, pp.486–492, 1998.
    [15] Frank-J. Meyer zu Heringdorf, M. C. Reuter & R. M. Tromp, “Growth dynamics of pentacene thin films” IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA
    [16] Sandra E. Fritz, Stephen M. Martin, C. Daniel Frisbie, Michael D. Ward, ”Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction” J. AM. CHEM. SOC. 9 Vol.126, No.13, (2004)
    [17] Iwao Yagi, Kazuhito Tsukagoshia, Yoshinobu Aoyagi, ”Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers” Thin Solid Films, 467, pp.168-171, (2004)
    [18] Donald.L Smith, ”Thin-film deposition , principles and practice” , McGraw-Hill, Inc
    [19] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Phys. Rev. 103, 51 (1956).
    [20] N. F. Mott, Canadian J. Phys. 34, 1356 (1956).
    [21] P. G. Le Comber and W. E. Spear," Electronic Transport in Amorphous Silicon Films," Phys. Rev. Lett., Vol. 25, pp. 509-511, 1970.
    [22] Kyunghee Choi, D. K. Hwang, Kimoon Lee, Jae Hoon Kim, and Seongil Im, ”Pentacene Thin-Film Transistors with Polymer/TiOx Double-Layer Dielectrics Operating at 3V” Electrochemical and Solid-State Letters, 10, pp.114-116, (2007)
    [23] A.L. Deman , J. Tardy, ” Stability of pentacene organic field effect transistors with a low-k polymer/high-k oxide two-layer gate dielectric” Materials Science and Engineering, pp.421-426, (2006)
    [24] R. J. H. Clark, “The chemistry of titanium and vanadium”, Elsevier, Amsterdam(1968).
    [25] P. Villars and L.D. Calvert, “Pearson's handbook of crystallographic data for intermetallic phases”, ASM International, Materials Park (1991)
    [26] A. J. Moulson, J. M. Herbert, “Electroceramics”, Chapman & Hall, London (1990).
    [27] M.A. Fury, “Chemical Mechanical Planarization of Aluminum-Based Alloys for MultilevelMetallization,“ Solid state Technology, Vol. 20,1995, pp.61-69.
    [28] 王建榮,林必窕,林慶福 編譯,”半導體平坦化CMP 技術”。
    [29] R. Jairath, M. Desai, M. Stell, R. Tolles, and D. Scherber Brewer,Mat. Res. Soc. Symp. Proc., 337, 121 (1994).
    [30] Chi-Hwan Kim; Jin-Hyuk Bae; Sin-Doo Lee; Jong Sun Choi School of Electrical Engineering, Seoul National University, Seoul, Koreab School of Electronics and Electrical Engineering, Hongik University, Mapo-gu,Seoul, Korea,” Fabrication of Organic Thin-Film Transistors Based onHigh Dielectric Nanocomposite Insulators” Mol. Cryst. Liq. Cryst., Vol. 471, pp. 147–154, 2007
    [31] Kunjithapatham Sethuraman, Shizuyasu Ochiai, Kenzo Kojima, and Teruyoshi Mizutani, ” Performance of poly(3-hexylthiophene) organic field-effect transistors on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects” , APPLIED PHYSICS LETTERS 92, 183302 (2008)
    [32] Sang Yoon, Kwonwoo Shin,Chan Eon Park,”The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics” ,Adv. Funct. Master. 2005, 15, 1806-1814
    [33] Soeren Steudel, Stijn De Vusser, Stijn De Jonge, Dimitri Janssen, Stijn Verlaak, Jan Genoe, and Paul Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors” , Appl. Phys. Lett., Vol. 85, No. 19, 8 November 2004
    [34] Ricardo Ruiz, Alexios Papadimitratos, “Thickness Dependence of Mobility in Pentacene Thin-Film Transistors” Adv. Mater.,17, pp.1795-1798, (2005)

    下載圖示 校內:2009-08-26公開
    校外:2009-08-26公開
    QR CODE