簡易檢索 / 詳目顯示

研究生: 洪乙任
Hung, Yi-Jen
論文名稱: 基於低容值設計之馬達驅動系統電流諧波失真改善
Improvement of Current Harmonic Distortion on the basis of Small DC-Link Capacitor Motor Drive System
指導教授: 謝旻甫
Hsieh, Min-Fu
蔡明祺
Tsai, Mi-Ching
白富升
Pai, Fu-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 71
中文關鍵詞: 永磁同步馬達驅動無電解電容弱磁控制功率因數校正壓縮機系統
外文關鍵詞: permanent magnet synchronous motor drive, electrolytic capacitor-less system, flux-weakening control, power factor correction, compressor system
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前家電產品常見之馬達驅動器直流端是以大容值電解電容為主,因為具備較佳之儲能特性,透過功率補償亦能滿足系統劇烈變動性負載。然而,大容值設計之功率因數校正電路體積較為龐大,且直流端電解電容容易損壞。為了追求縮小體積以及產品可靠度,無電解電容驅動器有逐漸取代傳統大容值驅動器之發展趨勢。
    無電解電容驅動系統之直流端電容當選用低容值之薄膜電容,可延長驅動器壽命並縮小整體體積。但也導致直流端電壓產生漣波,進而影響馬達轉矩及轉速之輸出,因此應用領域受限。本研究應用場合為壓縮機,其離心式負載將可穩定轉速輸出,使其符合產品需求。
    當直流端電壓大於市電輸入電壓將導致整流器截止,整流器導通角縮小會造成電源端功率因數下降,且截止區內之電流為不可控,造成系統的不穩定性。為了降低反電動勢對直流端電壓之影響,本研究利用直交軸電流控制,根據電壓關係式及轉矩關係式,在浮動電壓下,適當調整直軸電流命令,可有效提昇電源端功率因數。

    Nowadays, the large DC-link capacitors are usually utilized at motor drive system for home appliances. Which possess outstanding energy-storage characteristic, can meet the system’s severely variable load through the power compensation. However, the large-capacitance design of power factor correction circuit is bulky, and the DC-link capacitor is easily damaged. In pursuit of shrinking volume and product reliability, electrolytic capacitor-less systems have gradually replaced the traditional large-capacitance drivers.
    The low-capacitance film capacitor at electrolytic capacitor-less systems DC-link can not only extend the lifetime but reduce the volume. On the other hand, it also causes the ripple of DC bus voltage which effects the output of the motor torque and speed. Therefore, the application area is limited. In this study, the application focus on a compressor, and its centrifugal load makes the system torque ripple decrease the influence on the output speed.
    When the DC bus voltage is greater than the electric supply input voltage, a cut-off region of the rectifier will be generated. The reduced conduction angle of the rectifier will decrease the power terminal power factor. As a result of the uncontrolled current in cut-off region, the system may become instable. This study uses the d-q axis current control to reduce the influence of back EMF on the DC bus voltage. According to the constant torque equation and voltage limit equation under the floating voltage, the proper adjustment of the d-q axis current command can effectively improve the power factor of the power supply terminal.

    中文摘要 II Abstract III 目錄 XII 表目錄 XV 圖目錄 XVI 符號表 XIX 第一章 緒論 1 1.1 研究背景與動機 1 1.1.1 變頻馬達驅動系統架構 1 1.1.2功率因數規範及改善方法 2 1.1.3 電解電容與薄膜電容差異 5 1.2 文獻回顧 7 1.3 研究目的 10 1.4 論文章節概要 10 第二章 永磁同步馬達模型及向量控制原理 12 2.1 永磁同步馬達數學模型 12 2.1.1 永磁同步馬達電壓方程式 13 2.1.2 座標轉換 15 2.1.3 永磁同步馬達轉矩方程式 18 2.2 向量控制基本原理 20 2.2.1 空間向量脈寬調變控制 21 2.2.2 每安培最大轉矩控制 25 2.2.3 弱磁控制 26 第三章 直流端電容與壓縮機驅動系統關係 28 3.1 直流端電容特性分析 28 3.1.1直流端電容及選擇 28 3.1.2 直流端電壓與反電動勢關係 30 3.2 壓縮機系統參數鑑別 31 3.3 高慣量系統之特性曲線 33 第四章 低容值馬達驅動系統之高功因控制 35 4.1 低容值馬達驅動系統之失真因數改善 35 4.1.1 功率因數定義 35 4.1.2 壓縮機系統之高功因控制 36 4.2 高功因電流控制下之元件規格分析 39 4.2.1 直流端電壓漣波估測流程 40 4.2.2直流端電容值計算 42 4.3 系統整合模擬分析與比較 43 4.3.1 系統模擬架構 43 4.3.2 容值差異對本研究控制法之影響 45 第五章 實驗結果及比較 49 5.1 實驗平台規劃 49 5.2 模擬與實驗成果分析 50 5.2.1 動態模擬分析 50 5.2.2 實驗結果與比較 58 5.3 綜合討論 66 第六章 結論與未來發展 67 6.1 結論 67 6.2 未來發展 68 參考文獻 69

    [1] S. C. Lin and A. Lin, " The Residential Sector Electricity Use Research in Taiwan, " Journal of Taiwan Energy, 2017.
    [2] 經濟部能源局,《電業法§69》, 2019年5月
    [3] 台灣電力公司,《台電價目表》,2018年6月
    [4] International Electrotechnical Commission, "IEC 61000-3-2," 2018.
    [5] H.Z. Azazi, E.E. El-Kholy, S.A. Mahmoud, S.S. Shokralla, "Review of Passive and Active Circuits for Power Factor Correction in Single Phase, Low Power AC-DC Converters," 14th International Middle East Power Systems Conference, December, 2010.
    [6] M. M. Jovanovic and Y. Jang, "State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview," IEEE Transactions on Industrial Electronics, June 2005.
    [7] K. Harada, A. Katsuki and M. Fujiwara, "Use of ESR for deterioration diagnosis of electrolytic capacitor," IEEE Transactions on Power Electronics, Oct. 1993.
    [8] T. Shimizu, T. Fujita, G. Kimura, and J. Hirose, "A Unity Power Factor PWM Rectifier with DC Ripple Compensation," IEEE Transactions on Industrial Electronics, Aug 1997.
    [9] X. Zhang, X. Ruan, H. Kim, and C. K. Tse, "Adaptive Active Capacitor Converter for Improving Stability of Cascaded DC Power Supply System," IEEE Transactions on Power Electronics, April 2013.
    [10] S. Umesh, L. Venkatesha and A. Usha, "Active power factor correction technique for single phase full bridge rectifier," International Conference on Advances in Energy Conversion Technologies, 2014.
    [11] S. Lee, Y. Chen, Y. Chen and K. H. Liu, "Development of the active capacitor for PFC converters," IEEE Energy Conversion Congress and Exposition (ECCE), 2014.
    [12] I. Takahashi and H. Haga, "Power factor improvement of single-phase diode rectifier by fast field-weakening of inverter driven IPM motor," Proc. IEEE Power Electron. Drive Syst. Conf., 2001.
    [13] 陶人豪, "應用於離心式負載之小直流鏈電容高功因永磁同步馬達無感測驅動器之研製", 國立交通大學電控工程研究所碩士論文, 2017.
    [14] H. Lamsahel and P. Mutschler, "Permanent magnet drives with reduced dc-link capacitor for home appliances," 35th Annual Conference of IEEE Industrial Electronics, 2009.
    [15] K. Inazuma, K. Ohishi and H. Haga, "High-power-factor control for inverter output power of IPM motor driven by inverter system without electrolytic capacitor," IEEE International Symposium on Industrial Electronics, 2011.
    [16] D. Ding, G. Wang, N. Zhao, G. Zhang and D. Xu, "Enhanced Flux-Weakening Control Method for Reduced DC-Link Capacitance IPMSM Drives," IEEE Transactions on Power Electronics, Aug 2019.
    [17] H. Jung, S. Chee, S. Sul, Y. Park, H. Park and W. Kim, "Control of Three-Phase Inverter for AC Motor Drive With Small DC-Link Capacitor Fed by Single-Phase AC Source," IEEE Transactions on Industry Applications, 2014.
    [18] 吳昇澤, "以永磁同步馬達d-q軸電感量測原理推導與實測", 馬達電子報, 第781期, 成大馬達科技研究中心, 2018年.
    [19] 陳俊霖、謝易儒, "淺談交流馬達d-q軸轉換", 馬達電子報, 第750期, 成大馬達科技研究中心, 2017年.
    [20] S. J. Chapman, "Electric Machinery Fundamentals," McGraw-Hill Education, 2015.
    [21] 袁雷、胡冰新、魏克銀、陳姝, "現代永磁同步電機控制原理及MATLAB仿真", 北京航空航天大學出版社, 2016年.
    [22] 劉子瑜,"基於弦波電流驅動於永磁同步馬達電流迴路控制之研究", 國立成功大學電機工程研究所碩士論文, 2009年.
    [23] T. Sun, J. Wang and X. Chen, "Maximum Torque Per Ampere (MTPA) Control for Interior Permanent Magnet Synchronous Machine Drives Based on Virtual Signal Injection," IEEE Transactions on Power Electronics, Sept 2015.
    [24] Zhaohui Zeng, E. Zhou and D. T. W. Liang, "A new flux weakening control algorithm for interior permanent magnet synchronous motors," Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996.
    [25] T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," IEEE Transactions on Industry Applications, 1987.
    [26] H. Wang and F. Blaabjerg, "Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview," IEEE Transactions on Industry Applications, 2014.
    [27] S. Huang, S. Xiong, D. Zeng, L. Qu, L. Nie and G. Zhu, "Accurate Lifetime Predication of Aluminum Electrolytic Capacitor Considering Equivalent Series Resistance Variations," IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018.
    [28] D. Sharon, "Power factor definitions and power transfer quality in nonsinusoidal situations," IEEE Transactions on Instrumentation and Measurement, June 1996.
    [29] 齊江博, "無電解電容空調永磁壓縮機驅動系統高功率因數控制", 哈爾濱工業大學電氣工程研究所碩士論文, 2016年.
    [30] 王聖揚, "以降低電容值實現永磁馬達驅動高功因控制", 國立成功大學電機工程研究所碩士論文, 2018年.

    無法下載圖示 校內:2024-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE