簡易檢索 / 詳目顯示

研究生: 劉俊延
Liu, Chun-Yen
論文名稱: 具相關性分析系統識別功能之數位控制切換式電源轉換器
Digitally-Controlled SMPS with Correlation-based System Identification
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 系統識別相關性分析適應調節滑動視窗平滑數位控制電源轉換
外文關鍵詞: system identification, correlation analysis, ASWS, digitally-controlled SMPS
相關次數: 點閱:171下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實作,具相關性分析系統識別功能之數位控制切換式電源轉換器。採用新穎的數位電源技術,結合相關性分析之系統識別技術,使數位控制器具備監測電源轉換系統之頻率響應的能力。對於相關性分析之不理想效應造成的問題,提出以適應調節滑動視窗平滑技術(adaptive sliding window smoothing, ASWS),改善頻率響應監測結果。此外,亦利用本論文之數位控制器具備相關性分析系統識別能力,監測數位補償器與迴路增益之頻率響應。本論文以FPGA為實驗平台,透過SignalTapII傳輸監測資料至電腦端進行分析處理。並且利用Agilent網路分析儀進行量測作為對照,證明監測結果的正確性,以及驗證提出之方法確實能夠提升監測準確範圍,改善結果與預期相符。最後將驗證過的矽智財以TSMC 1P6M 0.18um Cell-Based製程下線。

    This thesis presents a digitally-controlled switched-mode power supply(SMPS) with correlation-based system identification. An improvement to the correlation-based system identification technique, adaptive sliding window smoothing(ASWS), is proposed to improve the accuracy of the frequency response identification, particularly at high frequencies near the desired loop-gain bandwidth frequency. Additionally, an extension to the correlation-based system identification is proposed that allows identification of the digital compensator and loop-gain frequency response. The digital controller and part of identification module are implemented using an Altera DE2 FPGA. The data of the results of the identification are sent to the computer through SignalTapII (an embedded FPGA logic analyzer). Experimental results show that the proposed ASWS technique can be used to improves identified frequency response accurately and smoothly. The proposed digital controller has been implemented in TSMC 1P6M 0.18μm CMOS technology.

    第一章 緒論 1 1.1 背景與動機 1 1.2 相關研究發展 4 1.3 目標與貢獻 8 1.4 論文架構簡介 8 第二章 數位PWM控制切換式電源轉換器簡介 10 2.1 切換式DC-DC降壓轉換器之基本原理 10 2.1.1 連續導通操作模式 10 2.1.2 離散時間交流訊號分析 12 2.2 數位PWM控制器 15 2.2.1 類比數位轉換器 15 2.2.2 數位補償器 16 2.2.3 數位脈波寬度調變器 18 第三章 系統識別 24 3.1 系統識別之原理及技術 24 3.1.1 頻域的系統識別方法 24 3.1.2 時域的系統識別方法 27 3.1.3 應用於即時監測DC-DC轉換器之前提條件 29 3.2 相關性系統識別方法 30 3.2.1 相關性分析理論 30 3.2.2 偽隨機二進制序列 32 3.3 相關性分析的研究挑戰 35 3.3.1 使輸入訊號之自相關函數,更近似於δ函數 36 3.3.2 抑制不理想效應,降低監測誤差 42 3.4 滑動視窗平滑技術(sliding window smoothing) 48 3.4.1 滑動視窗的概念 48 3.4.2 以滑動視窗平滑頻率響應監測曲線 49 3.4.3 適應調整寬度的滑動視窗平滑方式 51 第四章 具相關性系統識別功能之數位PWM控制DC-DC降壓轉換器設計 54 4.1 目標及規格 54 4.2 數位補償器設計與驗證考量 56 4.2.1 數位補償器係數的量化效應 57 4.2.2 以相關性分析系統識別功能,驗證數位補償器 59 4.2.3 依據監測結果,輔助數位補償器係數設計 60 4.3 監測迴路增益之頻率響應 61 4.3.1 探討監測迴路增益之頻率響應的方法 62 4.3.2 兩種監測迴路增益之頻率響應方法 64 4.4 系統模擬-使用MATLAB Simulink模型 66 第五章 FPGA數位控制系統及晶片實作 75 5.1 FPGA系統架構與規格 75 5.2 實驗平台與量測設置 76 5.3 系統實驗結果與比較 80 5.4 數位控制器晶片實作 85 5.4.1 以Cell-based設計流程實現數位控制器晶片 85 5.4.2 晶片佈局考量與打線圖 87 5.4.3 模擬結果 88 5.4.4 下線晶片規格 96 5.4.5 量測規劃 97 第六章 結論與展望 101 6.1 總結與貢獻 101 6.2 未來工作與研究方向 101 6.2.1 輸出阻抗監測 101 6.2.2 Online 數位網路分析儀 102 6.2.3 即時監測介面 102 6.2.4 自動調諧控制 102 附錄 103 參考文獻 103 著作 107 晶片測試成果報告 111

    [1] “Analysis of Reliability, Failure, & Degradation of Performance,” National Electronic Technologies. Available: http://www.netjo.jo/Analysis.pdf
    [2] Microchip. Intelligent Power Supply Design Solutions, 2009. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/01240a.pdf
    [3] Silicon Labs, Si8250 product datasheet, Available: http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=Support%20Documents/TechnicalDocs/Si8250.pdf&src=ProductMatrix
    [4] “Digital Power Control Enables System Identification,” in Power Electronics Technology Magazine, Nov. 2006. Available: http://powerelectronics.com/digital_power/design_features/power_digital_power_control/
    [5] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.
    [6] D. Maksimovic and R. Zane, "Small-Signal Discrete-Time Modeling of Digitally Controlled PWM Converters," IEEE Trans. Power Electronics, vol. 22, pp. 2552-2556, 2007.
    [7] C. Lucena, I. Quesada, C. Martínez, V. Valdivia, A. Lázaro, and A. Barrado, "Parametric identification algorithm based on frequency response for compensators optimization," in Proc. IEEE Appl. Power Electronics Conf., 2011, pp. 1858-1865.
    [8] B. Johansson and M. Lenells, "Possibilities of obtaining small-signal models of DC-to-DC power converters by means of system identification", in Proc. Telecommunications Energy Conf., 2000, pp.65 - 75.
    [9] N. Kong , A. Davoudi , M. Hagen , E. Oettinger , M. Xu , D. Ha and F. Lee, "Automated system identification of digitally controlled multiphase DC-DC converters", in Proc. IEEE Appl. Power Electronics Conf., 2009, pp.259-263.
    [10] J. Z. Morroni, R. Makismovic, D. , "An Online Stability Margin Monitor for Digitally Controlled Switched-Mode Power Supplies," IEEE Trans. Power Electronics, vol. 24, pp. 2639 - 2648, 2009.
    [11] J. Schoukens, R. Pintelon, E. van der Ouderaa, and J. Renneboog, "Survey of excitation signals for FFT based signal analyzers," IEEE Transactions on Instrumentation and Measurement, vol. 37, pp. 342-352, 1988.
    [12] C. Fernández, A. Fernández-Herrero, P. Zumel, A. Lázaro, and A. Barrado, "Measuring Bode plots of switching power converters from a single simulation in the time domain: Application to a digital control implemented on an FPGA," in Proc. IEEE COMPEL Conf., 2010, pp. 1-7.
    [13] B. Miao, R. Zane, and D. Maksimovic, "System identification of power converters with digital control through cross-correlation methods," IEEE Trans. Power Electronics, vol. 20, pp. 1093-1099, 2005.
    [14] L. Rufer, E. Simmeu, and S.Mir, “On-chip testing of linear time invariant systems using maximum-length sequences,” Programmable devices and systems, vol. 6, 2003, pp. 299-302.
    [15] M. H. Husin, M. F. M. Sabri, A. S. W. Marzuki, K. Lias, and M. F. Rahmat, "Pseudo random binary sequence on second order system," in Proc. ICCAE Conf., 2010, pp. 398-401.
    [16] L. Young-Cheol, W. Seog-Oh, K. Jong-Nam, and J. Young-Gook, "A Pseudorandom Carrier Modulation Scheme," IEEE Trans. Power Electronics, vol. 25, pp. 797-805, 2010.
    [17] "Pseudo-Random Bit Sequences and Noise Generation," The Art of Electronics, Cambridge University Press, pp. 437-446, 1980.
    [18] S.W. Sung and J.H. Lee, Pseudo-random binary sequence design for finite impulse response identification. Control Engineering Practice 11, pp. 935–947. 2003.
    [19] Alan V. Oppenheim, Ronald W. Schafer, with John R. Buck, Discrete-time signal processing, 2nd ed. Upper Saddle River, N.J. :Prentice Hall,1999.
    [20] Vinay K. Ingle, John G. Proakis, Digital Signal Processing Using MATLAB, 2nd ed. Thomson, 2007.
    [21] M. George and P. Alike, "Linear feedback shift registers in virtex devices," Application Note, Xilinx, Inc., Tech. Rep., 2001.
    [22] T. Roinila, T helin, M. Vilkko, T. Suntio, and H. Koivisto, “Circular correlation based identification of switching power converter with uncertainty analysis using fuzzy density approach,” Simulation Modeling Practice and Theory, vol. 17, no. 6, pp. 1043 –1058, Jul. 2009.
    [23] A. Barkley and E. Santi, "Improved Online Identification of a DC-DC Converter and Its Control Loop Gain Using Cross-Correlation Methods," IEEE Trans. Power Electronics, vol. 24, pp. 2021-2031, 2009.
    [24] J. Morroni, A. Dolgov, M. Shirazi, R. Zane, and D. Maksimovic, "Online Health Monitoring in Digitally Controlled Power Converters," in Proc. IEEE Power Electronics Spec. Conf., 2007, pp. 112-118.
    [25] S. P. Lipshitz, T. C. Scott, and J. Vanderkooy, “Increasing the audio measurement capability of FFT analyzers by microcomputer processing,” J. Audio Eng. Soc., vol. 33, no. 9, pp. 626-648, Sept. 1985.
    [26] P. D. Hatziantoniou and J. N. Mourjopoulos, “Generalized fractional-octave smoothing of audio and acoustic responses,” J. Audio Eng. Soc., vol. 48, no. 4, pp. 259-280, Apr. 2000.
    [27] M. Shirazi, J. Morroni, A. Dolgov, R. Zane, and D. Maksimovic, "Integration of Frequency Response Measurement Capabilities in Digital Controllers for DC-DC Converters," IEEE Trans. Power Electronics, vol. 23, pp. 2524-2535, 2008.
    [28] Stephen Marshall, Logic-based Nonlinear Image Processing, SPIE Press, 2006.
    [29] V.R. Daggu, M. Venkatesan, Design and implementation of an efficient reconfigurable architecture for image processing algorithms using Handel-C, MS Thesis, University of Nevada, Las Vegas, 2003.
    [30] Chun-Hung Yang, Chun-Nan Liu, Chien-Hung Tsai, "Direct Digital Compensator Design for Switching Converters," in Proc. IEEE Int. Symp. Next-Generation Electronics, 2010, pp. 143-146.
    [31] Chun-Nan Liu, Chun-Hung Yang, Chien-Hung Tsai, "Digital Compensator Design for Power-Aware DC-DC Converters," in Proc. IEEE Int. Symp. Aware Computing, 2010, pp. 177-180.
    [32] B. Miao, R. Zane, and D. Maksimovic, "FPGA-Based Digital Network Analyzer for Digitally Controlled SMPS," in Proc. IEEE Computers in Power Electronics Conf., 2006, pp. 240-245.
    [33] A. Barkley and E. Santi, "Online Monitoring of Network Impedances Using Digital Network Analyzer Techniques," in Proc. IEEE APEC Conf., 2009, pp. 440-446.
    [34] W.-H. Chang, “Switching mode power supply and method for determining a compensation factor thereof,” U.S. patent 7 548 048, Jun. 2009.
    [35] B. Miao, R. Zane, and D. Maksimovic, "Practical on-line identification of power converter dynamic responses," in Proc. IEEE APEC Conf., 2005, pp. 57-62.
    [36] S. Z. Budisin, "Fast PN sequence correlation by using FWT," in Proc. Electrotech. Conf., 1989, pp. 513-515.
    [37] E. E. Sutter, "The fast m-transform: a fast computation of cross-correlations with binary m-sequences," SIAM J. Comput., vol. 20, pp. 686-694, 1991.
    [38] Z. Lukic, A. Stupar, A. Prodic, and D. Goder, "Current estimation and remote temperature monitoring system for low power digitally controlled DC-DC SMPS," in Proc. IEEE Power Electronics Spec. Conf., 2008., pp. 1139-1143.
    [39] M. Shirazi, R. Zane, and D. Maksimovic, "An Auto-Tuning Digital Controller for DC-DC Power Converters Based on On-line Frequency Response Measurement," IEEE Trans. Power Electronics, vol. 24, no. 11, pp.2578-2588, 2009.
    [40] J. Morroni, R. Zane, and D. Maksimovic, "Design and Implementation of an Adaptive Tuning System Based on Desired Phase Margin for Digitally Controlled DC-DC Converters," IEEE Trans. Power Electronics, vol. 24, pp. 559-564, 2009.
    [41] Jeffrey Morroni, “Monitoring and control of power converters,” U.S. patent 0309567, Jun. 2009.
    [42] A. Barkley, R. Dougal, and E. Santi, "Adaptive control of power converters using Digital Network Analyzer Techniques," in Proc. IEEE APEC Conf., 2011, pp. 1824-1832.
    [43] C.-H. Chen, W.-H. Chang, D. Chen, L.-P. Tai, and C.-C. Wang, "Modeling of Digitally-Controlled Voltage-Mode DC-DC Converters," in Proc. IEEE Industrial Electronics Society, 2007, pp. 2005-2009.
    [44] B. H. Cho and F. C. Y. Lee, "Measurement of Loop Gain with the Digital Modulator," IEEE Trans. Power Electronics, vol. PE-1, pp. 55-62, 1986.
    [45] F. Gonzalez-Espin, E. Figueres, G. Garcera, R. Gonzalez-Medina, and M. Pascual, "Measurement of the Loop Gain Frequency Response of Digitally Controlled Power Converters," in Proc. IEEE Industrial Electronics Conf., 2010, pp. 2785-2796, vol. 57.
    [46] R. D. Middlebrook, "Measurement of loop gain in feedback system," Int. J. Elecrron., pp. 485-512, Apr. 1975.
    [47] R. Ridley, "Frequency Response Measurements for Switching Power Supplies," Unitrode Power Supply Design Seminar, 1999-00 Series, pp. A1-A12.
    [48] Y. Panov and M. M. Jovanovic, "Small-signal measurement techniques in switching power supplies," in Proc. IEEE APEC Conf., 2004, pp. 770-776 vol.2.
    [49] “Impedance Measurement Handbook,” Agilent Technologies. Guide 5950-3000.
    [50] “Evaluating DC-DC Converters with LF Network Analyzer,” Agilent Technologies. Application Note 5989-8036EN.
    [51] “Switching Power Supply Evaluation,” Agilent Technologies. Product Note 5968-7274E.

    下載圖示 校內:2015-02-16公開
    校外:2017-02-16公開
    QR CODE