研究生: |
張嘉陞 Chang, Chia-Sheng |
---|---|
論文名稱: |
切換式耦合電感及其應用於超寬頻頻率合成器低功率6,072/6,600-MHz壓控振盪器的設計 Switched Coupled Inductor and Its Application to a Low Power 6,072/6,600-MHz VCO Design for UWB RF Synthesizer Applications |
指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 122 |
中文關鍵詞: | 切換式電感 、壓控振盪器 |
外文關鍵詞: | VCO, switchable inductor |
相關次數: | 點閱:81 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要包含兩個部分。第一部分,我們對於文獻 [5] 中所提出的可調頻率極寬的壓控振盪器中所使用的切換式耦合電感做更進一步的特性分析與研究。我們亦將討論其模擬設計、量測分析以及等效電路模型的建立。第二部分,我們利用此切換式耦合電感去設計一個可應用於UWB MB-OFDM 的頻率合成器中的切換頻率的壓控振盪器;並另外比較使用微機電製程和一般製程製作下的切換式耦合電感在壓控振盪器電路效能上的差別。
首先,我們使用電磁模擬軟體(ADS Momentum)來對此切換式耦合電感進行模擬分析,其模擬方法與過程將逐一詳介。其中,藉由不同的切換式耦合電感架構以及不同尺寸大小的MOS 開關電晶體和電阻對此切換式耦合電感特性的影響也將被討論與分析。而此種切換式電感是利用TSMC 0.18 μm 1P6M標準RF CMOS製程來研製。為了有效的使用此種切換式耦合電感來設計電路及描述其高頻下的行為,一個簡單的電感等效電路模型也被提出。最後,模擬、量測以及等效電路模型結果將被說明與比較。
我們利用此種切換式耦合電感實現了本實驗室所提出來的頻率合成器架構的多頻帶壓控振盪器之應用。另外,並利用微機電製程於此種切換式耦合電感,以觀察此元件與一般製程上所實現之元件的特性差異以及在電路效能上的改進。
This thesis is mainly divided into two parts. In the first part, we investigate and characterize in depth the switched coupled inductors which has been reported in the wide tuning range VCO [5]. The simulation, measurement and equivalent circuit model results of the switched coupled inductors are presented. In the second part, we design a VCO utilizing such switched coupled inductors for the UWB MB-OFDM synthesizer application. In addition, a VCO circuit with a MEMS switched coupled inductor is also designed in a MEMS post-process and is compared with the performance of the VCO circuit in the standard process.
The simulation method and procedures of the switched coupled inductors will be introduced in the EM simulation soft (ADS Momentum). The characterizations of switched coupled inductors which are affected by the different geometry, MOS transistor size and resistance will be also discussed and analyzed. And the switched coupled inductors are fabricated in the TSMC 0.18 μm 1P6M standard RF CMOS process. In order to design the circuit with this kind of switchable inductor efficiently and describe the high frequency behavior of it, a simple equivalent lump-circuit is also proposed. Finally, the simulation, measurement and equivalent circuit model results are explained and compared.
We use the switched coupled inductors to implement the multi-band VCO of the frequency synthesizer which was proposed by our laboratory. Furthermore, the switched coupled inductors are also fabricated in the MEM process for observing the difference in the standard process and the improvement of the circuit performance.
[1] R. Harjani, J. Harvey, and R. Sainati, “Analog/RF physical layer issues for UWB systems,” in Proc. the 17th Int. Conf. VLSI Design, Mumbai, India, 2004, pp. 941–948.
[2] S.-M. Yim and K.-K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE Custom Integrated Circuits Conf., May 2001, pp. 205–208.
[3] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integrated Circuits Conf., Santa Clara, CA, 1998, pp. 555–558.
[4] C. Mishra, A. Valdes-Garcia, F. Bahmani, A. Batra, E. Sanchez-Sinencio and J. Silva-Martinez, “Frequency Planning and Synthesizer Architectures for MultiBand UWB Radios”, IEEE Transactions on Microwave Theory and Techniques, vol. 53, no.12, pp. 3744-3756, December 2005.
[5] M. Demirkan, S. P. Bruss, and R. R. Spencer, “11.8 GHz CMOS VCO with 62% tuning range using switched coupled inductors,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2007, pp. 401–404.
[6] J. N. Burghartz, D. C. Edelstein, M. Soyuer, H. A. Ainspan, and K. A. Jenkins, “RF circuit design aspects of spiral inductors on silicon,” IEEE J. Solid-State Circuits, vol. 33, pp. 2028–2034, Dec. 1998.
[7] Jong-Min Lee, et al., “Comparison of frequency response of spiral inductors with different figures,” Semiconductor Science Technology, vol. 16, pp.66-71, 2001.
[8] G. Stojanovic, JJ. Zivanov, “Comparison of Optimal Design of Different Spiral Inductors”, Proc. 24th Int. Conf. On Microelectronics (MIEL 2004), vol. 2, pp. 613-616, 2004.
[9] J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, pp. 736–745, May 1997.
[10] F. W. Grover, Inductance Calculations. Princeton, NJ: Van Nostrand, 1946, reprinted by Dover Publications, New York, NY, 1954.
[11] Wanchun Tang et al., "Inductance calculation of spiral inductors in different shapes" Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings
[12] H.-M. Hsu, "Analytical Formula for Inductance of Metal of Various Widths in Spiral Inductors," IEEE Transactions on Electron Devices, vol. 51, no. 8, pp. 1343?1346, August 2004
[13] N. Talwalkar, C. Yue, and S. Wong, "Analysis and Synthesis of On-Chip Spiral Inductors," IEEE Transactions on Electron Devices, pp. 176-182, February 2005.
[14] W. B. Kuhn and N. M. Ibrahim, “Analysis of current crowding effects in multiturn spiral inductors,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 31–38, Jan. 2001.
[15] D. Kelly and F. Wright, “Improvements to performance of spiral inductors on insulators,” in Proc. IEEE RFIC Symp., 2002, pp. 431–433.
[16] J. C. Guo and T. Y. Tan, “A broadband and scalable on-chip inductor model appropriate for operation modes of varying substrate resistivities,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 11, NOVEMBER 2007
[17] J. Peters. Design of High Quality Factor: Spiral Inductors in RF MCM-D. Master’s thesis, M.I.T. Sept. 2004
[18] C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” in Int. Electron Devices Meet. Tech. Dig., Dec. 1996, pp. 155–158.
[19] A. Fard, T. Johnson, M. Linder, and D. Aberg, “A comparative study of CMOS LC VCO topologies for wide-band multi-standard transceivers,” IEEE International Midwest Symposium on Circuits and Systems, vol.3, pp.17–20, July 2004.
[20] F. Herzel, H. Erzgraber, and N. Ilkov, “A new approach to fully integrated CMOS LC-oscillator with a very wide tuning range,” in Proc. Custom Integrated Circuits Conf., May 2000, pp. 573–576.
[21] Z. Li and K. K. O, “A 900-MHz 1.5-V CMOS voltage-controlled oscillator using switched resonators with a wide tuning range,” IEEE Microwave Wireless Compon. Lett., vol. 13, no. 4, pp. 137–139, Apr. 2003.
[22] Z. Li and K. K. O, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
[23] I. Cendoya, J. de No, B. Sedano, A. Garcia-Alonso, D. Valderas, and I. Gutierrez, “A new methodology for the on-wafer characterization of RF integrated transformers,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1046–1053, May 2007.
[24] O. El-Gharniti, E. Kerherve, J.B. Begueret,”Modeling and Characterization of On-Chip Transformers for Silicon RFIC”, IEEE MTT, vol. 55, no. 4, pp. 607-615, April 2007
[25] 施俊仰,“對稱式平面螺旋型電感之研究”, 交通大學電信工程研究所碩士論文,2002
[26] J. R. Long and M. A. Copeland, “The modeling, characterization, and design of monolithic inductors for silicon RF IC’s,” IEEE J. Solid-State Circuits, vol. 32, pp. 357–369, Mar. 1997.
[27] Ivan C. H. Lai and Minoru Fujishima, “A new on-chip substrate-coupled inductor model implemented with scalable expressions,” IEEE Journal of Solid State Circuits, vol. 41, no. 11, pp. 2491-2499, Nov. 2006.
[28] National Center for High-Performance Computing, “HFSS advanced training - spiral inductor design & EM modeling + circuit co-simulation,” Oct. 2007
[29] B. Razavi, RF Microelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1998.
[30] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905–910, June 2000.
[31] T. Soorapanth, C. P. Yue, D. R. Shaeffer, T. H. Lee, and S. S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI Circuit Dig. Tech. Papers, 1998, June, pp. 32–33.
[32] R. Bunch and S. Raman, “Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1325–1332, Aug. 2003.
[33] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[34] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., Orlando, FL, 2000, pp. 569–572.
[35] N. Fong, J. Kim, J.-O. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and G. Tarr, “A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 841–846, May 2004.
[36] C.-M. Hung, B. A. Floyd, N. Park, and K. K. O, “Fully integrated 5.35-GHz CMOS VCO’s and prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 17–22, Jan. 2001.
[37] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, pp. 326–336, Mar. 2000.
[38] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[39] T. P. Wang, R. C. Liu, H. Y. Chang, J. H. Tsai, L. H. Lu, and H. Wang, “A 30-GHz low-phase-noise 0.35-um CMOS push-push oscillator using micromachined inductors,” IEEE MTT-S Int. Microwave Symp. Dig., 2006.
[40] C.H. Chiu, K.H. Liang, H.Y. Chang, and Y.J. Chan, "A low phase noise 26-GHz push-push VCO with a wide tuning range in 0.18-μm CMOS technology," Proceedings of Asia-Pacific Microwave Conference 2006
[41] Ping-Chen Huang, Ren-Chieh Liu, Hong-Yeh Chang, Chin-Shen Lin, Ming-Fong Lei, Huei Wang, Chia-Yi Su, and Chia-Long Chang, “A 131-GHz push-push VCO in 90-nm CMOS technology,” 2005 IEEE RFIC Symposium Digest, pp. 613-616, Long Beach, CA, June 2005.
[42] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
[43] R. Aparicio and A. Hajimiri, “A noise-shifting differential colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728–1736, Dec. 2002.
[44] S. Yun, S. Shin, H. Choi, and S. Lee, “A 1mW Current- Reuse CMOS Differential LC-VCO with Low Phase Noise”, Proceedings of the International Solid-State Circuits Conference (ISSCC), San Francisco, CA, February 2005, pp. 540 – 541
[45] Z. Wang, H. Savci, N. Dogan, et al. "1-V Ultra-Low-Power CMOS LC VCO for UHF Quadrature Signal Generation," IEEE Internatioanl Symposium on Circuits and Systems, pp. 4022-4024, May 2006.
[46] C.L. Yang and Y.C. Chiang, "Low Phase-Noise and Low-Power CMOS VCO Constructed in Current-Reused Configuration," IEEE Microwave and Wireless Components Letters, VOL. 18, NO. 2, February 2008
[47] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a,” IEEE, Piscataway, NJ, IEEE P802.15-03/268r3- TG3a, Mar. 2004.