| 研究生: |
吳誌澄 Wu, Jhih-Cheng |
|---|---|
| 論文名稱: |
尖晶石薄膜磊晶於氮化鎵基板之研究 Properties of Epitaxial Spinel Thin Films on GaN Substrates |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 磊晶 、尖晶石 、薄膜 |
| 外文關鍵詞: | epitaxy, spinel, thin film |
| 相關次數: | 點閱:115 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題為使用射頻濺鍍法成長尖晶石鈦酸鋅及尖晶石鈦酸鎂磊晶薄膜於氮化鎵基板之材料特性與介電特性分析。
在成長鈦酸鋅磊晶薄膜的研究中,藉由控制鍍膜過程中濺鍍能量(功率)、調變濺鍍過程的氧分壓(氬氧比)及後退火溫度,觀察於不同參數下鈦酸鋅薄膜磊晶的情形。透過X光粉末繞射儀、X光低掠角繞射儀、極圖分析及穿透式電子顯微鏡(TEM)分析其結晶性、優選方向及磊晶結構。發現於鍍膜功率100 W、鍍膜氬氧比例1/1、在800oC 3分鐘快速熱退火(RTA)具有最佳磊晶關係,平面磊晶關係為(111)_(〖Zn〗_2 〖TiO〗_4 )|| (0001)_GaN,以及平面上方向的磊晶關係為[1 ̅10]_(〖Zn〗_2 〖TiO〗_4 )||[1 ̅1 ̅20]_GaN,[12 ̅1]_(〖Zn〗_2 〖TiO〗_4 )||[11 ̅00]_GaN;電性量測則由電壓-電流及電壓-電容量測,其漏電流密度為1.99×10-7 Acm-2,介電常數約為18.85,介面缺陷密度為8.38×1011 eV-1cm-2。
在鈦酸鎂的研究中,延用鈦酸鋅最佳參數再做調整,成長鈦酸鎂氧化層,發現鈦酸鎂與鈦酸鋅擁有相似的實驗結果,且同樣有能隙與氮化鎵相近,易造成漏電流過大的問題。
藉由加入寬能隙氧化鎂作為鈦酸鎂氧化層與氮化鎵間的緩衝層,改善鈦酸鎂因能隙與氮化鎵相近導致漏電流過大且電壓-電容曲線易崩潰的問題。最佳電性其漏電流密度為4.6 × 10-8 Acm-2,介電常數為17.6,介面缺陷密度為7.4 ×1011 eV-1cm-2。
This thesis reports on the epitaxially grown spinel layers on GaN substrate for the MOS applications.
Epitaxial Zn2TiO4 layers were deposited on GaN substrates by tuning the coating rate, the ratio of Ar and O2, and the annealing temperature. Powder, glazing angle, and pole figure X-ray diffraction(XRD), were performed to identify the crystallinity, the preferring orientation, and the texture of the Zn2TiO4 films. The best epitaxial relationship was found when deposited at rf power 100 W, Ar/O2 ratio = 1, and annealed at 800oC for 3 minutes(RTA, rapid thermal annealing). The epitaxial relationship was determined by the results from XRD and HR-TEM: (111)_(〖Zn〗_2 〖TiO〗_4 )|| (0001)_GaN, [1 ̅10]_(〖Zn〗_2 〖TiO〗_4 )||[1 ̅1 ̅20]_GaN, [12 ̅1]_(〖Zn〗_2 〖TiO〗_4 )||[11 ̅00]_GaN. And the relative permittivity, leakage current denstity and interfacial trap density of the Zn2TiO4 based capacitor was found to 18.85, 1.99×10-7 Acm-2, and 8.38×1011 eV-1cm-2, respectively.
Epitaxial Mg2TiO4 as a gate oxide of GaN has similar properties as those of Zn2TiO4. However, both Zn2TiO4 and Mg2TiO4 gate oxides encounter the leakage current problem because their band gaps are close to GaN.
Finally, a MgO buffer layer that was inserted between Mg2TiO4 layer and GaN substrate was used to solve the leakage current, and poor capacitor- voltage relation problems. The relative permittivity, leakage current density and interfacial trap density of the Zn2TiO4 based capacitor were found to be 17.6, 4.6×10-8 Acm-2, and 7.4×1011 eV-1cm-2, respectively.
http://en.wikipedia.org/wiki/Spinel
http://www.webmineral.com/data/Spinel.shtml
L. M. Lin and P. T. Lai, “Effects of NO Annealing and GaOxNy Interlayer on GaN Metal-Insulator-Semiconductor Capacitor with SiO2 Gate Dielectric”, Journal of The Electrochemical Society, 154, G58-G62 (2007).
S-A Lee, J-Y Hwang, J-P Kim, S.Y. Jeong, and C-R Cho, “Dielectric Characterization of Transparent Epitaxial Ga2O3 Thin Film on n-GaN/Al2O3 Prepared by Pulsed Laser Deposition”, Appl. Phys. Lett., 89, 182906 (2006).
Y. Zhoua, C. Ahyia, T. I. Smitha, M. Bozacka, C-C Tina, J. Williamsa, M. Parka, A-j Chengb, J-H Parkc, D-J Kimc, D. Wangd, E. A. Preblee, A. Hansere and K. Evanse, “Formation, Etching and Electrical Characteri- zation of a Thermally Grown Gallium Oxide on The Ga-face of a Bulk GaN Substrate”, Sol. St. Electr., 52 , 756–764(2008).
Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, “Inversion -Channel GaN Metal-Oxide-Semiconductor Field-Effect Transistor with Atomic- Layer -Deposited Al2O3 as Gate Dielectric”, Appl. Phys. Lett., 93, 053504 (2008) .
B. P. Gila, J. Kim, B. Luo, A. Onstine, W. Johnson, F. Ren, C. R. Abernathy, and S. J. Pearton, “Advantages and Limitations of MgO as a Dielectric for GaN”, Sol. St. Electr., 47, 2139–2142(2003).
J. Kim, B. Gila, R. Mehandru, J. W. Johnson, J. H. Shin, K. P. Lee, B. Luo, A. Onstine, C. R. Abernathy, S. J. Pearton, and F. Rena, “Electrical Characteri- zation of GaN Metal Oxide Semiconductor Diodes Using MgO as the Gate Oxide”, JES, 149, G482 -G484(2002).
A. M. Herrero, B. P. Gila, C. R. Abernathy, S. J. Pearton, V. Craciun, and K. Siebein, “Epitaxial Growth of Sc2O3 Films on GaN”, Appl. Phys. Lett., 88, 092117 (2006).
C.Liu, E. F. Chor, L. S. Tan, and Y.Dong, “Structural and Electrical Charac- terizations of The Pulsed-Laser-Deposition-Grown Sc2O3/GaN Heterostruc- ture”, Appl. Phys. Lett., 88, 222113(2006) .
H. Ohsato, T. Kato, S. Koketsu, R. D. Saxena and T. Okuda, “Epitaxial Orientation and a Growth Model of (0 01) GaN Thin Film on (1 1 1) Spinel Substrate”, Journal of Crystal Growth, 189-190, 202-207 (1998).
H.T. Kim, and Y. Kim, “Titanium Incorporation in Zn2TiO4 Spinel Ceramics”, JACS, 84, 1081-1086 (2001).
S. Kumar, R. Kumar, B. H. Koo, H. Choi, D. U. Kim, and C. G. Lee, “Structural and Electrical Properties of Mg2TiO4”, JCERSJ, 117 [5], 689–692 (2009).
肖定全,陶瓷材料,新文京開發出版,49-55,2003。
F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Am. Inst. Mining Met. Petrol. Engrs., 878-905, 1948.
V. N. Eremenko, Y. V. Naidich, and I. Aienko, “Liquid Phase Sintering”, New York: Consultants Bureau, 1970, ch. 4.
Schaffer and Saxena, “The Science and Design of Engineering Materials”, Chap3.
鄭景太,淺談高頻低損失介電材料,工業材料,176期, 90年8月。
D. A. Neamen, “Semiconductor Physics and Devices :Basic Principles", Irwin, (1992).
K. J. Yang, and C. Hu, “MOS Capacitance Measurements for High-Leakage Thin Dielectrics", IEEE T-ED, 46, 1500 (1999).
H-T Lue, C-Y Liu, and T-Y Tseng, “A improves two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric", EDL, 23, 553(2002).
D. K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., (1998).
E. F. Nicollian, and J. R. Brews, “MOS Physics and Technology", New York, Wiley, (2003).
L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure", Appl. Phys. Lett., 77, 3788(2000).
G. Eriksson, and A. D. pelton, “Critical Evaluation and Optimization of the Thermodynamic properties and Phase Diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 Systems”, Met. Trans. B, 24B, 795-805(1993)
鄭信民、林麗娟 ,X光繞測應用簡介,工業材料雜誌,181期, 91年1月。
Dieter K. Schroder, “Semiconductor, Material and Device Characterization”, 3rd. Ed.,(Wiley, New York, 2006), p.324.
R. S. Muller and T. I. Kamins, “Device Electronics for Integrated Circuits”, 2nd. Ed.,(Wiley, New York, 1982), p.443.
C. H. Hsu , J. S. Lin and H.W. Yang, “Fabrication and Characterization of MgAl2O4 Thin Films by Sol-Gel Method” , Adv. Mater. Res., 216, 514-517(2011).
R. Pandey, J.D. Gale, S.K. Sampath, and J.M. Recio, “ Atomistic Simulation Study of Spinel Oxides : Zinc Aluminate and Zinc Gallate,” JACS, 82 [12] 3337–41(1999).