| 研究生: |
蕭宇霆 Hsiao, Yu-Ting |
|---|---|
| 論文名稱: |
孤立波通過海堤結構物動力互制試驗研究 An experimental study on the interactions of solitary waves propagating over a seadyke |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 孤立波 、越波 、PIV 、壓力 |
| 外文關鍵詞: | solitary waves, overtopping, PIV, pressure |
| 相關次數: | 點閱:117 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在利用試驗研究孤立波通過不透水斜坡式海堤之越波特性變化,包含孤立波之越波演化過程、衝擊海堤後結構物、溯升。其中孤立波越波過海堤時分三種不同波高水深比來探討其越波後所造成之不同特性。此外,本試驗利用PIV 量測越波時之流場,內部速度向量以及改變海堤後結構物之距離來探討越波後之能量消散與溯升能量,包括作用於海堤後結構物之衝擊波壓分布、波壓時序列。而各波壓測點所測得之最大波壓資料。依不同波高水深比條件與距離海堤之相對位置,探討其趨勢及差異處。波浪越波等相關之定性定量資料可將提供後人進行延伸研究及比較討論。
試驗結果發現於相同之波高水深比但水深條件不同下,所形成之越波型態不盡相同,然而整體而言越波型態具有與波高水深比大致相同之趨勢。此外,試驗資料將堤後結構物之距離、衝擊壓力及不同波高水深比之結果整理並發現其衝擊壓力與堤後結構物之距離成一反比關係、與波高水深比成一正比關係。
This study experimentally investigates the dynamics of solitary wave propagating over a breakwater, including the overtopping, the impact of square structure and the related run-up. Three wave steepness and different positions of square structure behind the breakwater were tested to examine characteristics of overtopping. The PIV system and pressure sensors were used to measure the velocity field and pressure distribution, respectively. The wave energy dissipation, run-up energy, impact pressure distribution and time series of pressure are presented. Finally, the location maximum pressure caused by different wave steepness and relative positions of structure are also discussed.
The results found that the overtopping type is much different at various water depths with fixed wave steepness. However, all overtopping types and wave steepness have roughly same trend. In addition, there is a negative relationship between the impact pressure and the square structure distance, whereas there is a positive relationship between the impact pressure and the wave steepness.
1. Chang Lin, Sung-Chieh Chang, Tsung-Chun Ho and Kuang-An Chang“Laboratory Observation of Solitary Wave Propagating over a Submerged Rectangular Dike.” ASCE,545-554, 2006.
2. Fuminori Kato, Shigeki Inagaki and Masaya Fukuhama “Wave force on coastal dike due to tsunami” Coastal Engineering, 5150-5161, 2006.
3. Goring, D. G. “Tsunami: The propagation of long waves onto a shelf.” Rep. No. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, Calif., 1978.
4. Grilli, S. T., Member, ASCE, Miguel A. Losada and Francisco Martin, “CHARACTERISTICS OF SOLITARY WAVE BREAKING INDUCED BY BREAKWATERS.” ASCE, 74-92, 1994.
5. Grilli, S. T., Svendsen, I. A. and Subramanya, R., “Breaking Criterion and characteristics for solitary waves on slopes.” J. Wtrwy. Port, Coast. and Oc. Engrg., ASCE, 123(3), 102-112., 1997.
6. H. Árnason, “Interactions between an Incident Bore and a Free-Standing Coastal Structure”, University of Washington, Doctor of Philosophy, 2005.
7. Hall, J. V., and Watts, J. W., “Laboratory investigation of the vertical rise of solitary waves on impermeable slopes.” Technical Memorandum No. 33, Beach Erosion Board, U.S. Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Miss., 1953 .
8. Hsiao, S.-C., Hsu, T.-W., Lin, T.-C., Chang Y.-H. “On the evolution and run-up of breaking solitary waves on a mild sloping beach.” Coastal Engineering. doi:10.1016/ j.coastaleng, 2008.
9. Hwang K. S., Chang Y. H., Hwung H. H. and Chen H. H. “On the run-up and draw-down of breaking solitary waves.” International Conference Coastal Engineering, vol. 1, 201-212, 2006.
10. Hwung, H. H. and Lin, C. “The characteristics of internal flow field and bottom boundary layer of waves propagating on sloping bottom.” bulletin of Tainan Hydraulic Laboratory, National Cheng Kung University, 1989.
11. Iida, K., “Engergy and generation mechanisms of tsunamis and a catalog of earthquakes associated with tsunamis.” Proceedings of the tsunamis, Meetings associated with the tenth pacific science comgress, IUGG, Monograph No.24,pp.7-18,1963.
12. J.W. van der Meer “Technical report wave run-up and wave overtopping at dikes.” Technical Advisory Committee on Flood Defence, 2002.
13. Lin, C. & Hwung, H.H., “External and internal flow fields of plunging breakers,” Exp. Fluids., Vol. 12, pp. 229-237, 1992.
14. Li, Y., Raichlen, F. “Energy balance model for breaking solitary wave runup.” Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 129, no. 2. American Society of Civil Engineers, pp. 47– 59, 2003.
15. Lin, C., Ho, T. C,. Chang, S, C., Hsieh, S, C., and Chang, K. A. “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate” International Journal of Heat and fluid flow, 26, 894-904, 2005.
16. Lin, C., Chang, S, C., Ho, T. C,. and Chang, K. A. “Laboratory observation of a solitary wave propagating over a submerged rectangular dike” Journal of Engineering Mechanics, ASCE, 132(5), 545-554, 2006.
17. M. A. Hamzah, Hajime Mase and Tomotsuka Takayama. “Simulation and experiment of hydrodynamic pressure on a tsunami barrier” Coastal Engineering, 1501-1507,2000.
18. Mizutani, S. and F. Imamura. “Design of coastal structure including the impact and overflow on tsunamis, ” Proceedings of Coastal Engineering, JSCE, Vol.49, 731-735. 2002.
19. Synolakis, C. E., ‘‘The runup of solitary waves.’’ J. Fluid Mech.,185, 523–545, 1987.
20. Synolakis, C. E., and Skjelbreia, J. E. “Evolution of the maximum amplitude of solitary waves on plane beaches.” J. Wtrwy. Port, Coast. and Oc. Engrg., ASCE, 119(3), 323-342, 1993.
21. T. Tomita and Y. Yamamoto “Mechanism of coastal structure damage due to tsunamis, and case studies of coastal damage from indian ocean tsunamis.” Coastal Engineering, 5126-5138, 2006.
22. Tadepalli, S., Synolakis, C. E. “The run-up of N-waves on sloping beaches. Proc”. R. Soc. Lond. A 445, 99-112. 1994.
23. 陳韋嘉“孤立波碎波通過不透水斜坡式海堤之試驗研究” 國立成功大學水利及海洋工程所,碩士論文, 2008