| 研究生: |
陳勇隆 Chen, Yung-Long |
|---|---|
| 論文名稱: |
近液化底床波浪引致之懸浮漂砂傳輸特性初步研究 A Preliminary Study on Features of Suspended Sediment Transport near Wave-Fluidized Seabed |
| 指導教授: |
歐善惠
Ou, Shan-Hwei 臧效義 Tzang, Shiaw-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 液化底床 、傳輸 、流速 |
| 外文關鍵詞: | fluidized seabed, sediment transport, velocity |
| 相關次數: | 點閱:89 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解近液化底床處傳輸的特性,本試驗應用超音波Doppler流速計量測底床上方 1cm 處之流速,配合底床上方等間距水深 5 支光學式濃度計量取懸浮漂砂濃度剖面,和底床內部不同深度孔隙水壓反應土壤內部反應﹔試驗波浪條件以規則波、規則波群和具不同群性的不規則波浪進行試驗。由規則波和規則波群試驗結果顯示在非液化反應時,近砂質底床處水平方向流速可以線性波理論描述,其與理論值之比在 0.91~1.14 的範圍內,而垂直方向流速與理論值比在1.03~1.30 範圍內。起始液化反應時,水平方向流速會隨平均孔隙水壓抬升而變小,垂直方向流速則隨孔隙水壓抬升而變大,且不受起始液化層厚度影響,垂直方向流速放大的倍數均是整回合液化試次中最大者。隨液化次數增加,水平和垂直流速縮小和放大的量也會慢慢減少,最後回復非液化反應。當發生液化反應時,垂直方向流速產生振幅放大現象之後,於近底床處會有大量的懸浮漂砂濃度的抬升,且濃度剖面為冪次型態的分佈。具不同群性之不規則波浪試驗結果顯示,海床液化時平均孔隙水壓多階段抬升的過程與波浪群性有關,愈大的 GF 值,其使海床產生起始液化所需有義波高愈小。
In this thesis, a three-component acoustic Doppler velocimeter was adopted to measure the velocity field at 1cm above the seabed. Depth profiles of sediment concentration with 5 optical probes above and pore pressures with 5 transducers inside the seedbed are together used to investigate the features of suspended sediment transport near a wave-fluidized seabed. Regular waves, wave groups and irregular wave of different groupiness were generated in the laboratory flume tests. As a result, in unfluidized responses the measured near-bed velocities can be well predicted by linear theory under regular waves and wave groups. The ratios of measured to predicted were between 0.91 and 1.14 for horizontal velocity, while those were between 1.03 and 1.30 for vertical velocity. However, in fluidized responses a decrease in the horizontal velocity and an increase in the vertical velocity closely correlate with mean pore pressure build-ups. Regardless of the thickness of fluidized soil layers, maximum amplitude amplification in vertical velocity occur in the initially fluidized responses. After several wave-induced soil fluidization, the horizontal velocity amplitude reductions and the vertical velocity amplitude amplifications gradually decreased, become as the unfluidized response. During the fluidization, the suspended sediment concentration increases significantly after the vertical velocity amplitude amplification, while its depth profiles approximate a power law. Experimental results under irregular waves with different groupiness show that stepped build-ups of mean pore pressure closely relate with wave groupiness(GF). The larger values of GF the smaller significant wave height was needed in the initially fluidized responses.
1. Aagaard, T. and B. Greenwood (1995), “Longshore and cross-shore suspended sediment transport at far infragravity frequencies in a barred environment.” Continental Shelf Research. 15, No. 10, pp. 1235-1249.
2. Dean, R. G. and R. A. Dalrymple, “Water wave mechanics for engineers and scientist.” World Scientific, Singapore.
3. Doering, J. C. and A. J. Baryla (2002), “An investigation of the velocity field under regular and irregular waves over a sand beach.” Coastal Engineering, Vol. 44, pp. 275-300.
4. Dohmen-Janssen, C. M., D. M. Hanes, S. R. McLean, C. E. Vincent and J. S. Ribberink (2001), “Sheet flow and supension under wave groups in a lage wave flume (SISTEX99).” Proc. Coast. Dyn. ’01, ASCE, Lund, Sweden, pp. 313-322.
5. Foda, M. A. and S. Y. Tzang (1994), “Resonant fluidization of silty soil by water waves.” J. Geophys. Res. 99 (C10), pp. 20463-20475.
6. Funke, E. R. and E. P. D. Mansard (1980), “On the synthesis of realistic sea state.” Proc. 17th Int. Conf. on Coastal Eng., Sydney, pp. 2974-2991.
7. Hanes, D. M. (1991), “Suspension of sand due to waves groups.” Journal of Geophysical Research 96, pp. 8911-8915.
8. Hasselmann, K., et al (1973), “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).” Deutsche Hydr. Zeit Reihe A (80).
9. Hay, A. E. and A. J. Bowen (1994), “Space-time variability of sediment suspension in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 962-975.
10. Lee, J., S. O’Neil, K. Bedford and R. Van Evra (1994), “A bottom boundary layer sediment response to wave groups.” Coastal Engineering, ASCE, pp.1827-1836.
11. Mei, C. C. and M. A. Foda (1981), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.
12. Tzang, S. Y. (l992), “Water wave-induced soil fluidization in a cohesionless Seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
13. van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of Technology, The Netherlands.
14. Van Rijn, L. C. and F. J. Havinga (1993), “Transport of fine sands by currents and waves. II.” Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 121, No. 2, pp. 123-132.
15. Vincent, C. E. and D. M. Hanes (2002), “The accumlation and decay of near-bed suspended sand concentration due to waves and wave groups.” Continental Shelf Research 22, pp. 1987-2000.
16. Villard, P. V., P. D. Osborne and C. E. Vincent (1999), “Influence of wave groups on sand re-suspension over bedgforms in a large scale wave flume.” Coastal Sediment ’99, pp. 367-36.
17. Williams, J. J., C. P. Rose and P. D. Thone (2002), “Role of wave groups in resuspension of sandy sediments.” Marine Geology. 183, pp. 17-29.
18. 林朝福,何獻崇 (1995),「孔隙底床波浪減衰之試驗研究」,第十七屆海洋工程研討會論文集,第 407-422 頁。
19. 蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
20. 俞津修 (2000),「隨機波浪及其工程應用」。
21. 彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
22. 簡德深 (2001),「簡諧波與線性波群引致之細砂質海床土壤液化反應與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
23. 賴宏祐 (2002),「淺水之規則波與波群引致之細砂質海床液化與懸浮漂砂試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
24. 劉穎欣 (2002),「不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究」,國立成功大學水利及海洋工程學系碩士論文。