| 研究生: |
王子睿 Wang, Zih-Ruei |
|---|---|
| 論文名稱: |
水躍實驗中紊流強度與渦度擬能之分析與探討 Analysis and Discussion of Turbulence Intensity and Enstrophy in Hydraulic Jump Experiment |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 水躍 、粒子影像測速法 、紊流強度 、渦度擬能 |
| 外文關鍵詞: | Hydraulic jump, DPIV, Turbulence intensity, Enstrophy |
| 相關次數: | 點閱:159 下載:49 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為透過實驗量測水躍現象中紊流強度的變化,以及躍趾處因表面 roller 所產生之渦度擬能 (Enstrophy) 隨下游距離增加的變化。實驗方面本研究利用小尺度流槽進行上游福祿數介於 1.92 至 3.05 的水躍實驗,並分別在流槽的側視以及仰視方向使用高速攝影機進行拍攝,分析方面透過粒子影像測速法(Digital particle image velocimetry, DPIV)來獲取速度場資料。在側視的水躍量測中,發現低福祿數下的紊流強度分布與前人的量測結果趨勢不同,卻與福祿數較高的穩定水躍相似 (Lin et al.[25]),其紊流強度較高的區域分布在近躍趾底床附近,並往下游方向消散,故福祿數並非決定水躍中紊流強度分布之唯一條件,並且受實驗條件所影響。另外在仰視方向觀測的水躍中,在接近水面邊壁兩側有較快的速度分布,並且發現了與波狀水躍相似的特徵。本研究以實驗的角度來假設水躍中渦度擬能之計算方式,而分析出來的結果與 Richard and Gavrilyuk [37] 的模擬結果尺度相同,其在躍趾產生較大的渦度擬能,並隨著下游距離增加而逐漸消散,可以很好的來表示時間平均的水躍紊流場中,roller 隨空間消散的現象。最後本研究利用剪力淺水波方程式 (Richard and Gavrilyuk [37])進行一維的水躍模擬,過程中發現了許多問題並進行探討,而模擬的過程中發現渦度擬能的不穩定會導致躍趾產生來回振盪的現象。
This study is devoted to investigation on the hydraulic jumps in inclined channel, where the evolution of the turbulence intensity behind the hydraulic jump and the variation of enstrophy produced by the roller at the jump toe through hydraulic jump are examined by laboratory experiments. A small-scale rectangular open channel flume is utilized to carry out hydraulic jump experiments with upstream Froude number ranging from 1.92to3.05. The instantaneous velocity field are recorded by a high-speed camera and analyzed by the technique of the digital particle image velocimetry (DPIV). The high-speed camera recorded the velocity fields both in the side view and the bottom view of the flume, where the side view is at the 1/4 of the channel width and the bottom view consists of 4 levels (depths) above the bottom. In the side view measurement, the turbulence intensity of the hydraulic jump at low Froude number is different from the one in the previous study (Lin et al., 2012) due to the different channel orientation in experiment (inclined versus horizontal). In the bottom view measurement of the upper most slice, higher speeds are detected near the both side walls, similar characteristics to the undular jump (bore) in the weak jump. In the present study, we hypothesize the calculation method of enstrophy in the hydraulic jump from an experimental point of view. The analyzed result shows that the roller enstrophy is generated around the toe which dissipating in the down stream part of the flow. It is noted that the results are of the same scale and with a similar trend as given in Richard and Gavrilyuk (2013). Finally, a one dimensional simulation tool with shock-capturing property is implemented based on the shear shallow water equation (Richard and Gavrilyuk, 2012; 2013). Through numerical investigation, the instability of toe oscillation as well as the evolution of the enstrophy are thoroughly examined.
[1] 周書玄. 以粒子影像測速法量測水躍後之波動以及紊流強度消散之現象.成功大學水利及海洋工程學系學位論文,pages1–67,2020
[2] R.J.Adrian. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry. Applied Optics, 23(11):1690–1691,1984.
[3] A. F. Babb and H. C. Aus. Measurement of air in flowing water. Journal of the Hydraulics Division,107(12):1615–1630,1981.
[4] J. Bélanger. Notes sur l’hydraulique. Ecole Royale des Ponts et Chaussées, Paris, France,session,1842:223,1841.
[5] J. B. Belanger. Essaisur la solution numerique de quelques problemes relatifs au mouvement permanent des eaux courantes; par m. J.-B. Belanger.. chez Carilian-Goeury, libraire,des corps royaux des ponts et chaussees et des mines,1828.
[6] G. Bidone. Expériences sur le remou et sur la propagation des ondes. del’Imprimerie Royale,1820.
[7] H. Chanson. Flow characteristics of undular hydraulic jumps. comparison with nearcriticalflows. 1995.
[8] H. Chanson and J.S.Montes. Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns. Journal of Hydraulic Engineering,121(2):129–144,1995.
[9] V. T .Chow. Open-channel hydraulics. McGraw-Hill Civil Engineering Series,1959.
[10] A. M. Gharangik and M.H.Chaudhry. Numerical simulation of hydraulic jump.Journal of Hydraulic Engineering,117(9):1195–1211,1991.
[11] D. K. Ghose, P. Mandal, and S. Samantaray. Experimental study of hydraulic jumps in an inclined rectangular flume. Pertanika Journal of Science and Technology, 27(1):397–407,2019.
[12] M. Gunal and R. Narayanan. Hydraulic jump in sloping channels. Journal of Hydraulic Engineering,122(8):436–442,1996.
[13] W. H. Hager and R. Bremen. Classical hydraulic jump: sequent depths. Journal of Hydraulic Research,27(5):565–585,1989.
[14] W.H.Hager, R.Bremen, and N.Kawagoshi. Classical hydraulic jump: length of roller. Journal of Hydraulic Research,28(5):591–608,1990.
[15] F. M. Henderson. Open channel flow. 1996.
[16] H. Huang, H. Fiedler, and J. Wang. Limitation and improvement of piv. Experiments in Fluids,15(4):263–273,1993.
[17] B. Hyun, R. Balachandar, K. Yu, and V. Patel. Assessment of piv to measure mean velocity and turbulence in open-channel flow. Experiments in Fluids, 35(3):262–267, 2003.
[18] W. Jin and S. Low. Investigation of single-phase flow patterns in a model flash evaporation chamber using piv measurement and numerical simulation. Desalination, 150(1):51–63,2002.
[19] R. D. Keane and R. J. Adrian. Optimization of particle image velocimeters. i. double pulsedsystems. Measurement Science and Technology,1(11):1202,1990.
[20] R. D. Keane and R. J. Adrian. Theory of cross-correlation analysis of piv images. Applied Scientific Research,49(3):191–215,1992.
[21] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. Journal of Computational Physics, 160(1):241–282,2000.
[22] J. Lennon and D. Hill. Particle image velocity measurements of undularandhydraulic jumps. Journal of Hydraulic Engineering,132(12):1283–1294,2006.
[23] H. J. Leutheusser and V. C. Kartha. Effects of inflow condition on hydraulic jump. Journal of the Hydraulics Division,98(8):1367–1385,1972.
[24] C. Lin, S.-C. Hsieh, I.-J. Lin, K.-A. Chang, and R. V. Raikar. Flow property and selfsimilarity in steady hydraulic jumps. Experiments in Fluids,53(5):1591–1616,2012.
[25] M. Liu, N. Rajaratnam, and D. Z. Zhu. Turbulence structure ofhydraulic jumps of low froudenumbers. Journal of Hydraulic Engineering,130(6):511–520,2004.
[26] D. Long, N. Rajaratnam, P. M. Steffler, and P. R. Smy. Structure of flow in hydraulic jumps. Journal of Hydraulic Research,29(2):207–218,1991.
[27] L. Lourenco and A. Krothapalli. On the accuracy of velocity andvorticity measurements wit hpiv. Experiments in Fluids,18(6):421–428,1995.
[28] J. Ma, A. A. Oberai, R. T. Lahey, and D. A. Drew. Modeling air entrainment and transport in a hydraulic jump using two-fluid rans and des turbulenc emodels. Heat and Mass Transfer,47(8):911–919,2011.
[29] S. Misra, J. Kirby, M.Brocchini, F.Veron, M.Thomas, and C.Kambhamettu. The mean and turbulent flow structure of a weak hydraulic jump.Physics of Fluids,20(3):035106, 2008.
[30] I. Ohtsu, Y. Yasuda, and H. Gotoh. Flow conditions of undular hydraulic jumps in horizontal rectangular channels. Journal of Hydraulic Engineering, 129(12):948–955, 2003.
[31] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans. Particle image velocimetry: a practical guide. Springer, 2018.
[32] R. Reinauer and W. H. Hager. Non-breaking undular hydraulic jump. Journal of Hydraulic Research,33(5):683–698, 1995.
[33] F. Resch and H.Leutheusser. Reynolds stress measurements in hydraulic jumps. Journal of Hydraulic Research,10(4):409–430,1972.
[34] G.L. Richard and S.L. Gavrilyuk. A new model of roll waves: comparison with brock’s experiments. Journal of Fluid Mechanics,698:374,2012.
[35] G. L. Richard and S. L. Gavrilyuk. The classical hydraulic jump in a model of shear shallow-waterflows. Journal of Fluid Mechanics,725:492–521,2013.
[36] T. Rösgen. Optimal subpixel interpolation in particle image velocimetry. Experiments in Fluids,35(3):252–256,2003.
[37] H. Rouse, T. T. Siao, and S. Nagaratnam. Turbulence characteristics of the hydraulic jump. Journal of the Hydraulics Division,84(1):1–30,1958.
[38] F. Scarano and M.L. Riethmuller. Iterative multigrid approach in piv image processing with discrete window offset. Experiments in Fluids,26(6):513–523,1999.
[39] A. Sciacchitano and F. Scarano. Piv light reflections elimination via temporal high-pass filter. Meas.Sci.Technol, 2014.
[40] U. Shavit, R. J. Lowe, and J. V. Steinbuck. Intensity capping: a simple method to improvecross-correlationpivresults. Experiments in Fluids,42(2):225–240,2007.
[41] V. Teshukov. Gas-dynamic analogy for vortex free-boundary flows. Journal of Applied Mechanics and Technical Physics,48(3):303–309,2007.
[42] W. Thielicke and E. Stamhuis. Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. Journal of Open Research Software, 2(1), 2014.
[43] J. Westerweel, D. Dabiri, and M. Gharib. The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital piv recordings. Experiments in Fluids, 23(1):20–28,1997.
[44] J. Westerweel and F. Scarano. Universal outlier detection for piv data. Experiments in Fluids,39(6):1096–1100,2005.
[45] J. Zhou and P. Stansby. 2d shallow water flow model for the hydraulic jump. International Journal for Numerical Methods in Fluids,29(4):375–387,1999.