簡易檢索 / 詳目顯示

研究生: 古夢筑
Ku, Meng--Chu
論文名稱: 熱流場下裂紋漸近場高階參數之研究
Analysis of higher order parameters for near-tip fields of a crack under heat flux
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 熱流場兩平行裂縫高階參數有限元素分析最小二乘方法應力強度因子
外文關鍵詞: Heat flux field, two parallel cracks, coefficient of the higher-order terms, finite element analysis, Least-squares method, stress intensity factor
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對均勻熱流場下裂紋漸近場高階參數之問題進行研究,文中首先推導等向性材料含溫度作用下之位移漸近場之表達式,其次介紹最小二乘法配合有限元素ABAQUS分析軟體,說明高階參數之分析原理,數值分析中首先對等向性及正交異向性材料進行數值收斂性之驗證,然後再對兩平行裂紋的問題在熱流場下的高階參數做探討。

    The aim of this thesis is to study high-order parameters of near-tip fields of cracked body under uniform heat flow. In this paper, the asymptotic displacement fields including temperature in an isotropic material are firstly described. Then Least-squares method combined with ABAQUS software finite element method is introduced to the calculation of the high-order parameters. The validation of the convergence of the numerical method is validated by examples with the isotropic and orthotropic materials, and then the method is employed to the study of two parallel cracks. Results are compared and presented.

    摘要……………………………………………………………………………I Abstract………………………………………………………………………..II 誌謝…………………………………………………………………………..III 目錄…………………………………………………………………………..IV 表目錄………………………………………………………………………..VI 圖目錄……………………………………………………………………...VIII 第一章 緒論…………………………………………………………………..1 1-1 前言…………………………………………………………………..1 1-2 文獻回顧……………………………………………………………..1 1-3 本文綱要……………………………………………………………..2 第二章 基本公式介紹………………………………………………………...4 2-1 二維熱彈性力學理論…………………………………………………4 2-2 等向性含溫度之位移漸近場公式推導………………………………11 2-3 最小二乘方法 (Least-Squares Method) …………………………….16 第三章 有限元分析………………………………………………………….19 3-1 數值分析模式建立…………………………………………………..19 3-2 模擬破壞力學問題之相關設定……………………………………...20 3-3 使用介面…………………………………………………………….23 3-4 單位…………………………………………………………………25 第四章 數值模擬結果與討論………………………………………………..26 4-1 驗證基準問題……………………………………………………….26 4-2 驗證均質材料之平板問題…………………………………………...26 4-2.1等向性材料之均勻熱流之驗證(問題一)………………………26 4-2.2等向性材料之均勻傾斜熱流通量之驗證(問題二)…………….29 4-3 高階項數多寡對係數準確性的影響…………………………………32 4-4 環向位移與尖端裂縫距離之討論……………………………………36 4-5 使用最小二乘法驗證均質材料之平板問題………………………….38 4-6 驗證非均質材料之平板問題………………………………………...42 4-6.1正交異向性材料之均勻熱流之驗證……………………………42 4-6.2正交異向性材料有限板受均勻熱流之驗證…………………….47 4-7 兩平行裂縫在正交異向性材料之分析………………………………54 4-7.1正交異向性鋼材料之兩平行裂縫問題…………………………54 4-7.2正交異向性tyrannohex材料之兩平行裂縫問題……………….59 第五章 結論…………………………………………………………………63 附錄A………………………………………………………………………..64 參考文獻……………………………………………………………………..68

    [1]Ayatollahi, M.R. and Nejati, M., An over-deterministic method for calculation of coefficient of crack tip asymptotic field from finite element analysis. Fatigure and Fracture of Engineering Materials and Structures, Vol. 34, pp. 159-176, 2010.

    [2]Florence, A.L. and Goodier, J.N., Thermal stress at spherical cavities and circular holes in uniform heat flow. J. appl. Mech, Vol. 81, pp. 293-294, 1959.

    [3]Florence, A.L. and Goodier, J.N., Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole. ASME Journal Of Applied Mechanics, pp.635-639, 1960.

    [4]Hwu, Chyanbin., Thermal stresses in an anisotropic plate disturbed by an insulated elliptic hole or crack. ASME Journal Of Applied Mechanics, Vol. 57, pp. 916-922, 1990.

    [5]Itou, S., Thermal stresses around two parallel cracks in an infinite orthotropic plate under uniform heat flow. Journal Of Thermal Stresses, Vol. 24, pp.677-694, 2001.

    [6]Khalil, S.A., Sun, C.T. and Hwang, W.C., Application of a hybrid finite element method to determine stress intensity factors in unidirectional composites. International Journal Of Fracture, Vol. 31, pp. 37-51, 1986.

    [7]Lee, Kang Yong and Shul, chang won., Determination of thermal stress intensity factors for an interface crack under vertical uniform heat flow. Engineering Fracture Mechanics, Vol. 40, pp. 1067-1074, 1991.

    [8]Parkus, Heinz., Thermolasticity. by Blaisdell Publishing Company, 1968.

    [9]Rice, J.R., Elastic fracture mechanics concepts for interfacial cracks. ASME Journal Of Applied Mechanics, Vol. 110, pp.98-103, 1988.

    [10]Sekine, H., Thermoelastic interference between two neighboring cracks. Trans. Japan Soc. Mech. Engrs., Vol. 45, pp.1051-1057, 1979.

    [11]Sumi, N.B., Thermal stress singularities at tips of a Griffith crack in a finite rectangular plate. Nuclear Engineering Des, Vol. 60, pp.389-394, 1980.

    [12]Sturla, F.A. and Barber, J. R., Thermal stresses due to a plane crack in general anisotropic material. ASME Journal Of Applied Mechanics, Vol. 55, pp. 372-376, 1988.

    [13]Tsai, Y.M., Orthotropic thermoelastic problem of uniform heat flow disturbed by a central crack. J. Composite Mat., Vol. 18, pp.122-131, 1984.

    [14]Tsang, D.K.L., Oyadiji, S.O. and Leunh, A.Y.T., Two-dimensional fractal-like finite element method for thermoelastic crack analysis. International Journal Of Solids and Structures, Vol. 44, pp. 7862-7876, 2007.

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE