簡易檢索 / 詳目顯示

研究生: 侯尚緯
Hou, Shang-Wei
論文名稱: 建立在酵母菌中脂質和蛋白質結合關係資料庫
Construction of a database of lipid-protein binding interaction in yeast
指導教授: 吳謂勝
Wu, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 38
中文關鍵詞: 脂質體學脂質蛋白質結合關係
外文關鍵詞: lipidomics, lipid, protein, interaction
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂質擁有複雜的結構且種類繁多,由於脂質與蛋白質的結合關係影響到許多生物功能途徑,所以探討脂質與蛋白質的結合關係已經是目前脂質體學中的重點之一;雖然以前因為技術上的困難,讓脂質-蛋白質的交互關係研究遠不及蛋白質與蛋白質和蛋白質與基因網路的交互關係研究,儘管如今技術的蓬勃發展,脂質的重要性被陸續重視,且脂質與蛋白質結合關係的研究興起,但大量的研究實驗數據卻沒有適當的資料庫把他們統整起來,這成了一道無形的門檻。雖然有脂質的資料庫有提供查詢與脂質相關的蛋白質,但他們資料都只是收集與脂質相關關鍵字的GO(Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway,導致他們提供的資訊太少,也不是透過實驗去探討脂質與蛋白質的結合關係。因此我們收集了兩篇透過protein microarray和一篇透過lipid-array 研究脂質與蛋白質交互關係的實驗數據,經過整理後總共收集了32種脂質與 416種蛋白質有結合關係,且開發Yeast Lipid-Protein Binding Interaction Database (YLPBIdb) 提供生物學家一個搜尋脂質與蛋白質在酵母菌中結合關係的良好平台。在YLPBIdb我們提供使用者兩種搜尋模式(1)搜尋脂質會結到哪群蛋白質;(2)搜尋蛋白質會結合到哪些脂質。然後會將結果以網路圖的方式呈現,並且會進一步的做Enrichment分析,讓使用者可以更了解這群蛋白質群的生物特徵功能。我們還透過兩個實際例子來證明YLPBIdb的價值,(1) PI(3,4)P2、PI(4,5)P2、PI(3,5)P2和PI(3,4,5)P3這四種都是PI的磷酸化變形,在結構上只差一個磷酸根的位置,然而PI(3,5)P2與其他三種卻截然不同,這在YLPBIdb的Search By Lipid Combination可觀察得知;(2) 從YLPBIdb的Search By Protein Name 搜尋ROM2,發現它與PI3P、PI4P和PI(4,5)P2有結合關係,而有研究顯示ROM2確實會結合PI4P和PI(4,5)P2到並且影響到Stt4-Mss4激活Rho1 GTPase所調解MAP 激酶級聯反應。因此我們相信YLPBIdb能有助於研究脂質與蛋白質的交互關係。YLPBIdb網址:http://cosbi2.ee.ncku.edu.tw/YLPBIdb/

    In recent years, evidence has emerged showing that the lipid and protein binding interaction involved in the intracellular signaling. Therefore, we understand that lipid and protein binding interaction plays an important role in biological function. However, there is no a database of lipid and protein binding interaction, so we collected three experimental data, two of which through protein microarray and one through lipid array assay , a total of the 32 kinds of lipids and 416 proteins binding interaction were collected. And we used these data to develop the Yeast Lipid-Protein Binding Interaction Database (YLPBIdb) to provide a good platform for biologists to search for the associative relationship between the lipid and protein in yeast. The YLPBIdb is available at http://cosbi2.ee.ncku.edu.tw/YLPBIdb/ .

    中文摘要 I 英文延伸摘要 III 誌謝 VI 目錄 VII 圖目錄 VIII 表目錄 X 第一章 研究背景與動機 1 1.1 脂質與蛋白質的交互作用 1 1.2 脂質與蛋白質結合關係實驗技術 4 1.3 酵母菌與脂質研究 7 1.4 脂質相關資料庫 8 1.5 研究動機 10 1.6 碩論架構 11 第二章 資料來源與方法 12 2.1 資料收集 12 2.2 資料處理 15 2.3 發展一套生物特徵Enrichment分析工具 17 第三章 結果與討論 19 3.1 資料庫架構 19 3.2 資料庫功能與介面 20 3.2.1 搜尋功能 20 3.2.2 瀏覽功能 28 3.3 實例探究 32 3.3.1 探討Search By Lipid Combination 32 3.3.2 探討Search By Protein Name 34 第四章 結論與未來展望 36 4.1 結論 36 4.2 未來展望 36 參考文獻 38

    [1] A.-E. Saliba, I. Vonkova, and A.-C. Gavin. “The systematic analysis of protein-lipid interactions comes of age.” Nature Reviews Molecular Cell Biology, vol., no., 2015.
    [2] E. Fahy, S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill, R. C. Murphy, . . . W. Shaw. “A comprehensive classification system for lipids.” Journal of lipid research, vol. 46, no. 5, pp. 839-862, 2005.
    [3] E. Fahy, S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. Raetz, T. Shimizu, . . . E. A. Dennis. “Update of the LIPID MAPS comprehensive classification system for lipids.” Journal of lipid research, vol. 50, no. Supplement, pp. S9-S14, 2009.
    [4] M. J. Berridge, and R. F. Irvine. “Inositol phosphates and cell signalling.” Nature, vol. 341, no. 6239, pp. 197-205, 1989.
    [5] C. P. Downes, A. Gray, and J. M. Lucocq. “Probing phosphoinositide functions in signaling and membrane trafficking.” Trends in cell biology, vol. 15, no. 5, pp. 259-268, 2005.
    [6] T. Strahl, and J. Thorner. “Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae.” Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, vol. 1771, no. 3, pp. 353-404, 2007.
    [7] G. Di Paolo, and P. De Camilli. “Phosphoinositides in cell regulation and membrane dynamics.” Nature, vol. 443, no. 7112, pp. 651-657, 2006.
    [8] A. Shisheva. “Regulating Glut4 vesicle dynamics by phosphoinositide kinases and phosphoinositide phosphatases.” Frontiers in bioscience: a journal and virtual library, vol. 8, no., pp. s945-946, 2003.
    [9] L. Yakir-Tamang, and J. E. Gerst. “Phosphoinositides, exocytosis and polarity in yeast: all about actin?”. Trends in cell biology, vol. 19, no. 12, pp. 677-684, 2009.
    [10] T. Takenawa, and T. Itoh. “Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane.” Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, vol. 1533, no. 3, pp. 190-206, 2001.
    [11] M. R. Wenk, and P. De Camilli. “Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals.” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8262-8269, 2004.
    [12] M. R. Wenk. “The emerging field of lipidomics.” Nature reviews Drug discovery, vol. 4, no. 7, pp. 594-610, 2005.
    [13] M. J. Berridge, and C. Taylor. (1988). Inositol trisphosphate and calcium signaling. Paper presented at the Cold Spring Harbor symposia on quantitative biology.
    [14] C. Tanaka, and Y. Nishizuka. “The protein kinase C family for neuronal signaling.” Annual review of neuroscience, vol. 17, no. 1, pp. 551-567, 1994.
    [15] D. W. Hilgemann. “Local PIP2 signals: when, where, and how?”. Pflügers Archiv-European Journal of Physiology, vol. 455, no. 1, pp. 55-67, 2007.
    [16] M. Balazy. “Eicosanomics: targeted lipidomics of eicosanoids in biological systems.” Prostaglandins & other lipid mediators, vol. 73, no. 3, pp. 173-180, 2004.
    [17] G. D'Angelo, M. Vicinanza, A. Di Campli, and M. A. De Matteis. “The multiple roles of PtdIns (4) P–not just the precursor of PtdIns (4, 5) P2.” Journal of Cell Science, vol. 121, no. 12, pp. 1955-1963, 2008.
    [18] O. Lecompte, O. Poch, and J. Laporte. “PtdIns5P regulation through evolution: roles in membrane trafficking?”. Trends in biochemical sciences, vol. 33, no. 10, pp. 453-460, 2008.
    [19] A. Audhya, and S. D. Emr. “Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade.” Developmental cell, vol. 2, no. 5, pp. 593-605, 2002.
    [20] A. Shisheva. “Phosphoinositides in insulin action on GLUT4 dynamics: not just PtdIns (3, 4, 5) P3.” American Journal of Physiology-Endocrinology and Metabolism, vol. 295, no. 3, pp. E536-E544, 2008.
    [21] G. M. Carman, and G.-S. Han. “Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae.” Annual review of biochemistry, vol. 80, no., pp. 859-883, 2011.
    [22] A. X. Santos, and H. Riezman. “Yeast as a model system for studying lipid homeostasis and function.” FEBS letters, vol. 586, no. 18, pp. 2858-2867, 2012.
    [23] Ü. Coskun, and K. Simons. “Cell membranes: the lipid perspective.” Structure, vol. 19, no. 11, pp. 1543-1548, 2011.
    [24] O. Gallego, M. J. Betts, J. Gvozdenovic‐Jeremic, K. Maeda, C. Matetzki, C. Aguilar‐Gurrieri, . . . L. J. Jensen. “A systematic screen for protein–lipid interactions in Saccharomyces cerevisiae.” Molecular systems biology, vol. 6, no. 1, p. 430, 2010.
    [25] H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, . . . T. Houfek. “Global analysis of protein activities using proteome chips.” Science, vol. 293, no. 5537, pp. 2101-2105, 2001.
    [26] K.-Y. Lu, S.-C. Tao, T.-C. Yang, Y.-H. Ho, C.-H. Lee, C.-C. Lin, . . . M.-S. Chen. “Profiling lipid–protein interactions using nonquenched fluorescent liposomal nanovesicles and proteome microarrays.” Molecular & Cellular Proteomics, vol. 11, no. 11, pp. 1177-1190, 2012.
    [27] X. Han, and R. W. Gross. “Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples.” Mass spectrometry reviews, vol. 24, no. 3, pp. 367-412, 2005.
    [28] X. Han. “Neurolipidomics: challenges and developments.” Frontiers in bioscience: a journal and virtual library, vol. 12, no., p. 2601, 2007.
    [29] S. Dowler, G. Kular, and D. R. Alessi. “Protein lipid overlay assay.” Sci. STKE, vol. 2002, no. 129, pp. pl6-pl6, 2002.
    [30] P. Zhang, Y. Wang, H. Sesaki, and M. Iijima. “Proteomic identification of phosphatidylinositol (3, 4, 5) triphosphate-binding proteins in Dictyostelium discoideum.” Proceedings of the National Academy of Sciences, vol. 107, no. 26, pp. 11829-11834, 2010.
    [31] A.-E. Saliba, I. Vonkova, S. Ceschia, G. M. Findlay, K. Maeda, C. Tischer, . . . T. Pawson. “A quantitative liposome microarray to systematically characterize protein-lipid interactions.” nature methods, vol. 11, no. 1, pp. 47-50, 2014.
    [32] A. Goffeau, B. G. Barrell, H. Bussey, and R. Davis. “Life with 6000 genes.” Science, vol. 274, no. 5287, p. 546, 1996.
    [33] D. Botstein, and G. R. Fink. “Yeast: an experimental organism for 21st Century biology.” Genetics, vol. 189, no. 3, pp. 695-704, 2011.
    [34] G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, . . . B. Andre. “Functional profiling of the Saccharomyces cerevisiae genome.” Nature, vol. 418, no. 6896, pp. 387-391, 2002.
    [35] E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, . . . H. Bussey. “Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis.” Science, vol. 285, no. 5429, pp. 901-906, 1999.
    [36] P. O. Brown, and D. Botstein. “Exploring the new world of the genome with DNA microarrays.” Nature genetics, vol. 21, no., pp. 33-37, 1999.
    [37] S. G. Oliver. “From DNA sequence to biological function.” Nature, vol. 379, no. 6566, p. 597, 1996.
    [38] W.-K. Huh, J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson, J. S. Weissman, and E. K. O'shea. “Global analysis of protein localization in budding yeast.” Nature, vol. 425, no. 6959, pp. 686-691, 2003.
    [39] A. H. Y. Tong, G. Lesage, G. D. Bader, H. Ding, H. Xu, X. Xin, . . . M. Chang. “Global mapping of the yeast genetic interaction network.” Science, vol. 303, no. 5659, pp. 808-813, 2004.
    [40] M. L. Gaspar, M. A. Aregullin, S. A. Jesch, L. R. Nunez, M. Villa-García, and S. A. Henry. “The emergence of yeast lipidomics.” Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, vol. 1771, no. 3, pp. 241-254, 2007.
    [41] J. L. Sampaio, M. J. Gerl, C. Klose, C. S. Ejsing, H. Beug, K. Simons, and A. Shevchenko. “Membrane lipidome of an epithelial cell line.” Proceedings of the National Academy of Sciences, vol. 108, no. 5, pp. 1903-1907, 2011.
    [42] L. Yetukuri, K. Ekroos, A. Vidal-Puig, and M. Orešič. “Informatics and computational strategies for the study of lipids.” Molecular BioSystems, vol. 4, no. 2, pp. 121-127, 2008.
    [43] X. L. Guan, and M. R. Wenk. “Mass spectrometry‐based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae.” Yeast, vol. 23, no. 6, pp. 465-477, 2006.
    [44] C. S. Ejsing, J. L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, R. W. Klemm, . . . A. Shevchenko. “Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.” Proceedings of the National Academy of Sciences, vol. 106, no. 7, pp. 2136-2141, 2009.
    [45] K. Watanabe, E. Yasugi, and M. Oshima. “How to search the glycolipid data in “LIPIDBANK for Web”, the newly developed lipid database in Japan.” Trends in Glycoscience and Glycotechnology, vol. 12, no. 65, pp. 175-184, 2000.
    [46] G. O. Consortium. “The Gene Ontology (GO) database and informatics resource.” Nucleic acids research, vol. 32, no. suppl 1, pp. D258-D261, 2004.
    [47] M. Kanehisa, and S. Goto. “KEGG: kyoto encyclopedia of genes and genomes.” Nucleic acids research, vol. 28, no. 1, pp. 27-30, 2000.
    [48] D. Cotter, A. Maer, C. Guda, B. Saunders, and S. Subramaniam. “Lmpd: lipid maps proteome database.” Nucleic acids research, vol. 34, no. suppl 1, pp. D507-D510, 2006.
    [49] I. Rivals, L. Personnaz, L. Taing, and M.-C. Potier. “Enrichment or depletion of a GO category within a class of genes: which test?”. Bioinformatics, vol. 23, no. 4, pp. 401-407, 2007.
    [50] W. R. Parrish, C. J. Stefan, and S. D. Emr. “PtdIns (3) P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway.” Journal of Cell Science, vol. 118, no. 23, pp. 5589-5601, 2005.

    無法下載圖示 校內:2019-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE