| 研究生: |
林泂良 Lin, Jiung-Liang |
|---|---|
| 論文名稱: |
錯誤容忍技術運用於可調式編碼之研究 Error Resilient Techniques for Scalable Video Coding |
| 指導教授: |
郭致宏
Kuo, Chih-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 可調式編碼 、累贅編碼 、全畫面修復 、錯誤容忍 、多核心 |
| 外文關鍵詞: | SVC, Redundant coding, Frame based, Error resilience, Multi-core |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們提出重複宏塊邊緣搜尋演算法來增加錯誤修復的影像品質。相較於邊緣搜尋演算法,重複宏塊邊緣搜尋法修正其不適合做完整畫面修復的缺點,在編碼時,我們將較為重要的宏塊做重複編碼,因此當一個畫面無法解碼時,較為重要的宏塊可以先做解碼,並且提供周圍宏塊搜尋時定位的資訊,藉此大幅增加修正畫面的可靠度。在文中,我們將探討重複宏塊編碼數量以及解碼排序對影像畫面修復的影響。相較於傳統動量內插演算法,我們提出的方法在封包遺失率為10%時,優於傳統演算法至少3dB。另外,我們討論其他方式運用在演算法中的影響,包括在搜尋時增加邊緣連續的條件、搜尋時以動量內插做搜尋中心以減少計算複雜度、單方向/雙方向預測、平行處理用運在雙核心的機制等等。
In this thesis, a redundant macro block coding with texture-based selective boundary matching algorithm (RMB-TSBMA) is introduced to improve the video quality for error recovery. Different from texture-based selective boundary matching algorithm (TSBMA), the algorithm is more suitable for frame based recovery. The RMB coding encodes the information of some essential blocks. When a frame gets lost, we can first decode RMBs, and then neighboring MBs with TSBMA, so that the RMBs can provide the correct position for boundary MBs matching to get better visual quality. The influences of the RMB number and the reordering method are also discussed. Compared with the other algorithms, the PSNR of the proposed RMB-TSBMA performs better than conventional method of temporal direct mode (TDM) by over 3dB at the packet loss rate 10%. Besides, we talk about the other topic for RMB-TSBMA, including considering the edges when searching in the algorithm, setting search center as the MVs of TDM to decrease the search window, single-direction/bi-direction prediction for boundary search, and parallel execution for dual-core process.
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H. 264/AVC standard,” To appear in IEEE Transactions on
Circuits and Systems for Video Technology, p. 1, 2007.
[2] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of SVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1194–1203, 2007.
[3] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H. 264/AVC video coding standard,” IEEE Transactions on circuits and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.
[4] H. Schwarz, D. Marpe, and T. Wiegand, “Scalable extension of H. 264/AVC,” ISO/IEC JTC1/WG11 Doc. M, vol. 10569.
[5] M. Ghandi and M. Ghanbari, “Error concealment for SNR scalable video coding,” Signal Processing: Image Communication, vol. 21, no. 2, pp. 91–99, 2006.
[6] C. Ying, X. Kai, Z. Feng, P. Purvin, and B. Jill, “Frame loss error concealment for SVC,” Journal of Zhejiang University, vol. 7, no. 5, pp. 677–683, 2006.
[7] Q. Ma, F. Wu, and M. Sun, “Error Concealment For Spatially Scalable Video Coding Using Hallucination,” in Proceedings of IEEE International Symposium on Circuits and Systems, 2009.
[8] M. Shoaib, “Key Picture Error Concealment Using Residual Motion-Copy in Scalable Video Coding,” in Proceedings of the 2009 WRI World Congress on Computer
Science and Information Engineering-Volume 06, pp. 591–595, IEEE Computer Society, 2009.
[9] X. Qian, G. Liu, and H. Wang, “Texture based selective block matching algorithm for error concealment,” in 2007 IEEE International Conference on Multimedia and
Expo, pp. 739–742, 2007.
[10] W. Lam, A. Reibman, and B. Liu, “Recovery of lost or erroneously received motion vectors,” in 1993 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1993. ICASSP-93., vol. 5, 1993.
[11] H. Schwarz, D. Marpe, and T. Wiegand, “Hierarchical B pictures,” Joint Video Team, Doc. JVT-P014, Poznan, Poland, 2005.
[12] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical B pictures and MCTF,” in 2006 IEEE International Conference on Multimedia and Expo,
pp. 1929–1932, 2006.
[13] S. Cei and P. Cosman, “Comparison of error concealment strategies for MPEG video,” in 1999 IEEE Wireless Communications and Networking Conference,
1999. WCNC, pp. 329–333, 1999.
[14] J. Reichel, H. Schwarz, and M. Wien, “Joint scalable video model 11 (JSVM 11),” Joint Video Team, doc. JVT-X202, Geneva, Switzerland, 2007.
[15] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable H. 264/MPEG4-AVC extension,” in 2006 IEEE International Conference on Image Processing, pp. 161–164, 2006.
[16] Y. Wang and Q. Zhu, “Error control and concealment for video communication: A review,” Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997, 1998.
[17] S. Bandyopadhyay, Z. Wu, P. Pandit, and J. Boyce, “Frame loss error concealment for H. 264/AVC,” in 73rd MPEG meeting and 16th JVT meeting, Joint Video
Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT- P, 2005.
[18] X. Ji, D. Zhao, and W. Gao, “Concealment of whole-picture loss in hierarchical Bpicture scalable video coding,” IEEE Transactions on Multimedia, vol. 11, no. 1,
pp. 11–22, 2009.
[19] Y. Wang, S. Wenger, J. Wen, and A. Katsaggelos, “Error resilient video coding techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4, pp. 61–82, 2000.
[20] D. Tian, M. Hannuksela, Y. Wang, and M. Gabbouj, “Error resilient video coding techniques using spare pictures,” in Packet Video, iteseer, 2003.
[21] I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-resilient coding in JPEG-2000 and MPEG-4,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 6, pp. 899–914, 2000.
[22] M. Hannuksela, Y. Wang, and M. Gabbouj, “Isolated regions in video coding,” IEEE transactions on Multimedia, vol. 6, no. 2, pp. 259–267, 2004.
[23] P. Lambert, W. De Neve, Y. Dhondt, and R. Van de Walle, “Flexible macroblock ordering in H. 264/AVC,” Journal of Visual Communication and Image Repre-
sentation, vol. 17, no. 2, pp. 358–375, 2006.
[24] S. Wenger and M. Horowitz, “FMO: flexible macroblock ordering,” ITU-T JVT-C, 2002.
[25] R. Gonzalez and R. Woods, “Digital image processing. 2002,” Publishing House of Electronics Industry.
[26] C. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, p. 10, 1962.
[27] E. Horowitz and D. Mehta, Fundamentals of data structures in C++. Galgotia, 2006.
[28] W. Peterson and D. Brown, “Cyclic codes for error detection,” Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.
[29] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algorithms, pp. 568–570. The MIT press, 2001.
[30] “SVC reference software.” http://ip.hhi.de/imagecom_G1/savce/downloads/
SVC-Reference-Software.htm.
[31] S. Ye, Q. Sun, and E. Chang, “Edge directed filter based error concealment for wavelet-based images,” in 2004 International Conference on Image Processing, 2004. ICIP'04, pp. 809–812, 2004.
[32] M. Ma, O. Au, S. Chan, and M. Sun, “Edge-Directed Error Concealment,” IEEE transactions on circuits and systems for video technology, vol. 20, no. 3, 2010.
[33] T. Wu, G. Wu, C. Chen, and S. Chien, “Enhanced temporal error concealment algorithm with edge-sensitive processing order,”