| 研究生: |
鄧教弘 Deng, Jiao-Hong |
|---|---|
| 論文名稱: |
應用孔彈性理論分析飽和與未飽和雙層土壤之土壤壓密行為 Analytical Solutions for One-dimensional Consolidation of two-layered (Saturated and Unsaturated) Soils |
| 指導教授: |
羅偉誠
Lo, Wei-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 飽和土壤 、未飽和土壤 、層狀土壤壓密理論 、孔彈性壓密理論 |
| 外文關鍵詞: | Saturated soils, Unsaturated soils, Two-layered soil system, Consolidation theory of poroelasticity |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
前人研究土壤壓密行為通常應用於單層土壤,但是實際上,天然土壤是透過沉降過程形成的,每一層都包含不同性質的土壤。由於天然土壤通常表現出分層,因此分析層狀土壤壓密的過程將能有效瞭解土壤分層壓密的機制。前人研究中利用Terzaghi (1925)及Biot (1941)的飽和土壤壓密沉陷理論模式於單層及多層土壤壓密的研究已具有相當完備的理論以及數值研究。透過Lo et al. (2014)利用孔彈性理論方程式(Lo et al., 2005)並結合線性應力-應變關係式所推導出單層未飽和土壤壓密理論,可以瞭解未飽和土壤壓密與飽和土壤壓密之間的差異及重要性。因此本研究將以Biot (1941)的飽和土壤壓密理論以及Lo et al. (2014)的未飽和土壤壓密理論為基礎,分析上層為未飽和土壤與下層為飽和土壤之層狀土壤壓密行為。
本研究假設雙層土壤間之交界面滿足超額孔隙水壓連續及水流連續之條件下,且邊界條件為土壤表面為透水層與大氣接觸,底層為不透水層之半排水條件與土壤表面和底層均為透水層與大氣接觸之雙邊排水條件,將單層土壤壓密沉陷問題延伸至雙層土壤,探討地層為下層由飽和土壤所組成,上層由未飽和土壤所組成之雙層土壤。假設土壤為上層未飽和砂土,與下層飽和黏土組成,和與之相反的上層未飽和黏土,與下層飽和砂土組成。分別探討邊界條件與上層未飽和部分之初始水飽和度對雙層土壤之超額孔隙流體壓力的消散行為及隨時間變化之土壤總沉陷量之影響。首先將未飽和耦合方程式精確分離為可解析求解之非耦合方程式,再搭配拉普拉斯轉換(Laplace transform),我們得出了封閉形式的解析解,它解釋了這種兩層系統中可變形固體基質與可壓縮流體之間複雜的交互作用。排水邊界條件的不同影響了超額孔隙流體壓力的消散時間與土壤總沉陷量的大小。由於在上層和下層中存在不同的水飽和度(部分飽和與完全飽和),因此超額孔隙水壓不會表現出相對於深度的對稱分佈。
Researches often focus on single-layered soil, in fact, natural soils have been created through a sedimentation process and tend to be horizontally layered, consisting of several homogeneous layers, each layer comprising a different soil type with its own distinct properties. Due to natural soils are often layered, each stratum will be subjected to induced fluid pressure gradient or applied compaction stress to produce distinct flow and deformation patterns. Thus, predicting the behavior of layered soils is crucial. To model the behavior of soil consolidation for a two-layered (saturated and unsaturated) soil system, we begin from the incorporation of the one-dimensional consolidation poroelasticity model of porous medium containing a single compressible, viscous fluid studied by Biot (1941), and combine with the expansion of the model presented by Lo et al. (2014) to a double-fluid system. This two-layered soil system consists of a lower soil layer is fully saturated, whereas an upper soil layer is unsaturated. First, the linear transformation that accurately separates our coupled model equations into analytically solvable coordinates is realized.
Next, the boundary value problem involving these governing equations under semi-permeable boundary condition and fully permeable boundary condition are formulated as a typical example, which complies with the physical constraint to ensure the continuity of pore water pressure and pore water flux at the interface. Using the Laplace time transformation, we obtain the closed-form, analytical solution accounting for the complex interaction between compressible interstitial fluids and deformable solid matrix in such a double-layered soil system. Drainage boundary condition indeed influence the development of excess pore air and water pressures along with the time-dependent total soil subsidence. Owing to the existence of different water saturation (full and partial saturations) in the lower saturated layer and upper unsaturated layer, excess pore fluid pressure does not show a symmetric distribution with respect to vertical depth.
1. Albers, B., “Linear elastic wave propagation in unsaturated sands, silts, loams and clays.” Transp. Porous Media, 86(2), 567-587, 2011.
2. Ausilio, E., and Conte, E., “Settlement rate of foundations on unsaturated soils.” Can. Geotech. J., 36(5), 940-946, 1999.
3. Barden, L., “Consolidation of compacted and unsaturated clays.” Ge´otechnique, 15(3), 267-286, 1965.
4. Beavan, J., Evans, K., Mousa, S., and Simpson, D., “Estimating aquifer parameters from analysis of forced fluctuations in well level: An example from the Nubian Formation near Aswan, Egypt, 2, Poroelastic properties.” J. Geophys. Res., 96(7), 12139-12160, 1991.
5. Behnke, J.J., and Bianchi, W.C., “Pressure distributions in layered sand columns during transient and steady-state flows.” Water Resour. Res., 1(4), 557-562, 1965.
6. Biot, M.A., “General theory of three-dimensional consolidation.” J. Appl. Phys., 12, 155-164, 1941.
7. Biot, M.A., “Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher frequency range.” J. Acoust. Soc. Am., 28(2), 168-191, 1956.
8. Biot, M.A., and Willis, D.G., “The elastic coefficients of the theory of consolidation.” J. Appl. Mech., 24, 594-601, 1957.
9. Biot, M.A., “Mechanics of deformation and acoustic propagation in porous media.” J. Appl. Phys., 33(4), 1482-1498, 1962.
10. Bishop, A.W., “The effective stress principle.” Lecture Notes at Norwegian Geotechnical Society, Oslo, Norway, 39, 859-863, 1959.
11. Blanchard, F.G., and Byerly, P., “A study of a well gage as a seismograph.” Bull. Seismol. Soc. Am., 25, 313-321, 1935.
12. Borja, R.I., “On the mechanical energy and effective stress in saturated and unsaturated porous continua.” Int. J. Solids Struct., 43(6), 1764-1786, 2006.
13. Bredehoeft, J.D., “Response of well-aquifer systems to earth tides.” J. Geophys. Res., 72(12), 3075-3087, 1967.
14. Brooks, R.H., and Corey, A.T., “Hydraulic properties of porous media.” Hydrol. Pap. 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins, 1964.
15. Carcione, J.M., Helle, H.B., Santos, J.E., and Ravazzoli, C.L., “A constitutive equation and generalized Gassmann modulus for multimineral porous media.” Geophysics, 70(2), 17-26, 2005.
16. Chao, N.V., Lee, J.W., and Lo, W.C., “Gravity effect on consolidation in poroelastic soils under saturated and unsaturated conditions.” J. Hydrol., 566, 99-108, 2018.
17. Chen, Z.H., “Consolidation theory of unsaturated soil based on the theory of mixture.” Appl. Math. Mech., 14, 721-733, 1993.
18. Chen, J., Hopmans, J.W., Grismer, M.E., “Parameter estimation of two-fluid capillary pressure-saturation and permeability functions.” Adv. Water Res., 22(5), 479-493, 1999.
19. Churchill, R.V., “Operational Mathematics.” McGraw-Hill, New York, 1972.
20. Conte, E., “Consolidation analysis for unsaturated soils.” Can Geotech J., 41(4), 599-612, 2004.
21. Daksanamurthy, V., and Fredlund, D.G., “A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients.” Water Resour. Res., 17(3), 714-722, 1981.
22. Dakshanamurthy, V., Fredlund, D.G., and Rahardjo, H., “Coupled three-dimensional consolidation theory of unsaturated porous media.” In Proc., 5th Int. Conf. on Expansive Soils, Institution of Engineers, Adelaide, Australia, 99-103, 1984.
23. Deng, J.H., Lee, J.W., and Lo, W.C., “Closed-form solutions for one-dimensional consolidation in saturated soils under different waveforms of time-varying external loading.” J. Hydrol., 573, 395-405, 2019.
24. Desai, C.S., and Saxena, S.K., “Consolidation analysis of layered anisotropic foundations.” Int. J. Numer. Analyt. Methods Geomech., 1, 5-23, 1977.
25. Fazeli, A., Keshavarz, A., and Moradi, M., “Coupled consolidation of layered unsaturated soil under general time-dependent loading.” Int. J. Geomech., 18(8), 04018088, 2018.
26. Fredlund, D.G., and Morgenstern, N.R., “Constitutive relations for volume change in unsaturated soils.” Can. Geotech. J., 13(3), 261-276, 1976.
27. Fredlund, D.G., and Morgenstern, N.R., “Stress State Variables for Unsaturated Soils.” J. Geotech. Eng. Div., ASCE, 103(5), 447-466, 1977.
28. Fredlund, D.G., and Hasan, J.U., “One-dimensional consolidation theory: Unsaturated soils.” Can. Geotech. J., 16(3), 521-531, 1979.
29. Fredlund, D.G., and Rahardjo. H., “Soil mechanics for unsaturated soils.” New York, John Wiley & Sons, 1993.
30. Fredlund, D.G., Rahardjo, H., and Fredlund, M.D., “Unsaturated Soil Mechanics in Engineering Practice.” Wiley & Sons; New Jersey, 2012.
31. Geertsma, J., “Problems of rock mechanics in petroleum production engineering.” Proc., 1st Congress of the Intl. Soc. of Rock Mech., Lisbon, 1, 585-594, 1966.
32. Gray, H., “Simultaneous consolidation of contiguous layers of unlike compressive soils.” Trans. ASCE, 110, 1327-1356, 1945.
33. Ho, L., and Fatahi, B., “One-dimensional consolidation analysis of unsaturated soils subjected to time-dependent loading.” Int. J. Geomech., 16(2), Article Number: 04015052, 2016.
34. Ho, L., Fatahi, B., and Khabbaz, H., “Analytical solution to axisymmetric consolidation in unsaturated soils with linearly depth-dependent initial conditions.” Comput. Geotech., 74, 102-121, 2016.
35. Huang, J., and Griffiths, D.V., “One-dimensional consolidation theories for layered soil and coupled and uncoupled solutions by the finite-element method.” Ge´otechnique, 60(9), 709-713, 2010.
36. Ishihara, K., and Towhata, I., “Dynamic Response Analysis of Level Ground Based on the Effective Stress Method.” Soil Mechanics-Transient and Cyclic Loads, Pande, G.N., and Zienkiewicz, O.C., eds., Wiley, New York, 133-172, 1982.
37. Jacob, C.E., “On the flow of water in an elastic artesian aquifer.” Eos. Trans., AGU, 21(2), 574-586, 1940.
38. Kameo, Y., Adachi, T., and Hojo, M., “Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading.” J. Mech. Phys. Solids, 56, 1794-1805, 2008.
39. Kumpel, H.J., “Poroelasticity: Parameters reviewed.” Geophys. J. Int., 105,783-799, 1991.
40. Lee, P.K.K., Xie, K.H. and Cheung, Y.K., “A study on one-dimensional consolidation of layered systems.” Int. J. Numer. Analyt. Methods Geomech., 16, 815-831, 1992.
41. Lewallen, K.T., and Wang, H.F., “Consolidation of a double-porosity medium,” Int. J. Solids Struct., 35, 4845-4867, 1998.
42. Lin, Y.T., and Hsieh P.C., “Semianalytical Solution for a Flow over Multilayered Soils.” J. Eng. Mech., 141(9), 06015001, 2015.
43. Lo, W.C., Sposito G., and Majer, E., “Immiscible two-phase fluid flows in deformable porous media.” Adv. Water Resour., 25(8-12), 1105-1117, 2002.
44. Lo, W.C., Sposito, G., and Majer, E., “Wave propagation through elastic porous media containing two immiscible fluids,” Water Resour. Res., 41(2), 2005.
45. Lo, W.C., Yeh, C.L., and Tsai, C.T., “Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions.” J. Hydrology., 338, 273-284, 2007.
46. Lo, W.C., Sposito, G., Majer, E., and Yeh, C.L., “Motional modes of dilatational waves in elastic porous media containing two immiscible fluids.” Adv. Water Resour., 33(3), 304-311, 2010.
47. Lo, W.C., Sposito, G., and Huang, Y.H., “Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies.” J. Appl. Geophys., 78, 77-84, 2012.
48. Lo, W.C., and Sposito, G., “Acoustic waves in unsaturated soils.” Water Resour. Res., 49(9), 5674-5684, 2013.
49. Lo, W.C., Sposito, G., and Chu, H., “Poroelastic theory of consolidation in unsaturated soils.” Vadose Zone J., 13(5), 2014.
50. Lo, W.C., and Lee, J.W., “Effect of water content and soil texture on consolidation in unsaturated soils.” Adv. Water Resour., 82, 52-69, 2015.
51. Lo, W.C., Sposito, G., Lee, J.W., and Chu, H., “One-dimensional consolidation in unsaturated soils under cyclic loading.” Adv. Water Resour., 91, 122-137, 2016.
52. Lo, W.C., Chao, N.C., Chen, C.H., and Lee, J.W., “Poroelastic theory of consolidation in unsaturated soils incorporating gravitational body forces.” Adv. Water Resour., 106, 121-131, 2017.
53. Melchior, P., “Die gezeiten in unterirdischen flussigkerten.” Erdoel Kohle, 13, 312-317, 1960.
54. Miao, L.C., Wang, X.H., and Kavazanjian, E. Jr., “Consolidation of a double-layered compressible foundation partially penetrated by deep mixed columns.” J. Geotech. Geoenviron. Eng., 134(8), 1210-1214, 2008.
55. Miao, L.C., Wang, F., and Wang, X.H., “One dimensional consolidation of double-layered foundation with multi-level load.” Marine Georesour. Geotech., 28(1), 1-24, 2010.
56. Mualem, Y., “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resour. Res., 12(3), 513-522, 1976.
57. Olson, R.E., “Consolidation under time-dependent loading.” J. Geotech. Engng. Div., 103(1), 55-60, 1977.
58. Pride, S.R. “Relationships between seismic and hydrological properties.” In: Y. Rubin and S.S. Hubbard, editors, Hydrogeophysics. Springer-Verlag, New York. 253-291, 2005.
59. Pyrah, I.C. “One-dimensional consolidation of layered soils.” Ge´otechnique, 46(3), 555-560, 1996.
60. Qin, A., Chen, G., Tan, Y., and Sun, D.A., “Analytical solution to one-dimensional consolidation in unsaturated soils.” Appl. Math. Mech. Engl., 29(10), 1329-1340, 2008.
61. Qin, A., Sun, D.A., and Tan. Y., “Analytical solution to one-dimensional consolidation in unsaturated soils under loading varying exponentially with time.” Comput. Geotech., 37, 233-238, 2010.
62. Rawls, W.J., Ahuja, J.R., and Brakensiek, D.L., “Estimating soil hydraulic properties from soils data.” Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, 329-341, 1992.
63. Rendulic, L., “Porenziffer und Porenwasserdruck in Tonen (Void ratio and pore water pressure in clays).” Bauingenieur, 17(51/53), 559-564, 1936.
64. Rice, J.R., and Cleary, M.P., “Some basic stress diffusion solutions for fluid-saturated porous media with compressible constituents.” Rev. Geophys. Space Phys., 14, 227-241, 1976.
65. Shan, Z.D., Ling, D.S., and Ding, H.J., “Exact solutions for one-dimensional consolidation of single-layer unsaturated soil.” Int. J. Numer. Anal. Meth. Geomech., 36, 708-722, 2012.
66. Shan, Z.D., Ling, D.S., and Ding, H.J., “Analytical solution for the 1D consolidation of unsaturated multi-layered soil.” Comput. Geotech., 57, 17-23, 2014.
67. Schiffman, R.L., Chen, A.T., and Jordan, J.C., “An analysis of consolidation theories.” J. Soil Mech. Found. Div., 95(SM1), 285-312, 1969.
68. Schiffmann, R.L., and Stein, J.R., “One-dimensional consolidation of layered systems.” J. Soil Mech. Found. Div., 96(SM4), 1499-1504, 1970.
69. Song, X., and Borja, R.I., “Mathematical framework for unsaturated flow in the finite deformation range.” Int. J. Numer. Meth. Engng., 97(9), 658-682, 2014.
70. Tang, X.W., and Onitsuka, K., “Consolidation of double-layered ground with vertical drains.” Int. J. Numer. Anal. Meth. Geomech., 25, 1449-1465, 2001.
71. Terzaghi, K., “Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen (The calculation of permeability number of the clay out of the process of the hydrodynamic phenomenon tension).” Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A, 32, 125-138, 1923.
72. Terzaghi, K., “Erdbaumechanik auf Bodenphysikalischer Grundlage” Vienna, Austria, Deutichke, 1925.
73. Terzaghi, K., “Theoretical soil mechanics.” John Wiley & Sons, New York, NY, USA, 1943.
74. Truesdell, C., “Rational thermodynamics.” Springer, New York, 1984.
75. Tuncay, K., and Corapcioglu, M.Y., “Consolidation of elastic porous media saturated by two immiscible fluids.” J. Eng. Mech. 122(11), 1077-1085, 1996.
76. Tuncay, K., and Corapcioglu, M.Y., “Wave propagation in poroelastic media saturated by two fluids.” J. Appl. Mech. 64(2), 313-320, 1997.
77. Tuncay, K., Kambham, K.K.R., and Corapcioglu, M.Y., “Self-weight subsidence of saturated soft porous media.” J. Eng. Mech., 124(6), 630-638, 1998.
78. Ulker, M.B.C., “Pore pressure, stress distributions, and instantaneous liquefaction of two-layer soil under waves.” J. Waterway, Port, Coastal, Ocean Eng., 138(6), 435-450, 2012.
79. Uzuoka, R., and Borja, R.I., “Dynamics of unsaturated poroelastic solids at finite strain.” Int. J. Numer. Anal. Meth. Geomech., 36, 1535-1573, 2012.
80. Van der Kamp, G., and Gale, J.E., “Theory of earth tide and barometric effects in porous formations with compressible grains.” Water Resour. Res., 19(2), 538-544, 1983.
81. Van Genuchten, M.T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J., 44(5), 892-898, 1980.
82. Verruijt, A., “Elastic storage of aquifers.” In: DeWiest, R.J.M., Eds., Flow Through Porous Media, Academic Press, New York, 331, 1969.
83. Verruijt, A., “Approximations of cyclic pore pressures caused by sea waves in a poro-elastic half-plane.” In: Pande, G.N., and Zienkiewicz, O.S., Eds., Soil Mechanics-Transient and Cyclic Loads, Wiley, New York, 37-51, 1982.
84. Verruijt, A., “Theory and problems of poroelasticity.” Delft University of Technology, 2013.
85. Wang, L., Sun, D., Li, L., Li, P., and Xu, Y., “Semi-analytical solutions to one-dimensional consolidation for unsaturated soils with symmetric semi-permeable drainage boundary.” Comput. Geotech., 89, 71-80, 2017a.
86. Wang, L., Sun, D., Qin, A., and Xu, Y., “Semi-analytical solution to one-dimensional consolidation for unsaturated soils with semi-permeable drainage boundary under time-dependent loading.” Int. J. Numer. Anal. Methods Geomech., 41(16), 1636-1655, 2017b.
87. Wang, K., and Davis, E.E., “Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations.” J. Geophy. Res., 101(5), 11483-11495, 1996.
88. Wang, H.F., “Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology.” Princeton University Press, Princeton, 2000.
89. Whitaker, S., “Transport equations for multiphase system.” Chem. Eng. Sci., 28(1), 139-147, 1973.
90. Wong, T.T., Fredlund, D.G., and Krahn, J., “A numerical study of coupled consolidation in unsaturated soils.” Can. Geotech. J., 35(6), 926-937, 1998.
91. Xie, K.H., Xie, X.Y., and Gao, X., “Theory of one dimensional consolidation of two-layered soil with partially drained boundaries.” Computers and Geotechnics, 24(4), 265-278, 1999.
92. Xie, K.H., Xie, X.Y., and Jiang, W., “A study on one-dimensional nonlinear consolidation of double-layered soil.” Computers and Geotechnics, 29(2), 151-168, 2002.
93. Xu, C., Chen, Q., Liang, L., and Fan, X., “Analysis of consolidation of a soil layer with depth-dependent parameters under time-dependent loadings.” Eur. J. Environ. Civ. Eng., 22(1), 200-212, 2017.
94. Yamamoto, T., Koning, H.L., Sellmeijer, H., and van Hijum, E., “On the response of poro-elastic bed to water waves.” J. Fluid Mech., 87(1), 193-206, 1978.
95. Zhou, W.H., Zhao, L.S., Garg, A., and Yuen, K.V., “Generalized analytical solution for the consolidation of unsaturated soil under partially permeable boundary conditions.” Int. J. Geomech., 17(9), 04017048, 2017.
96. Zhu, G., and Yin, J.H., “Consolidation of double soil layers under depth-dependent ramp load.” Ge´otechnique, 49(3), 415-421, 1999.