簡易檢索 / 詳目顯示

研究生: 林易儒
Lin, Yi-Ru
論文名稱: 平行板間單顆上升氣泡引起的流場特性
Flow induced by a single rising bubble between parallel walls
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 薄膜生物反應器氣泡流污泥羧甲基纖維素非牛頓流體質點影像測速法剪應力
外文關鍵詞: MBR, Bubble Flow, Sludge, CMC, Non-Newtonian Fluid, PIV, Shear Stress
相關次數: 點閱:141下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗研究旨在探討平行板間單顆上升氣泡引起的流場特性。本研究透過高速攝影機拍攝,可視範圍(Field of View, FOV)使用質點影像測速法(Particle Image Velocimetry, PIV)配合多時間間距速度計算法來量測液體相之流場,為了模擬污泥流變特性,實驗除了在清水中進行,另在兩種不同黏度羧甲基纖維素(carboxymethyl cellulose, CMC)溶液下進行,兩組CMC分別為0.05%、0.15%,實驗中於水槽底部注入一體積3毫升的氣泡,探討相同氣泡體積在不黏度溶液下其引起的流場特性。
      試驗初期由流場可視化觀察到氣泡通過後之尾跡流場十分紊亂,因此所有試驗條件均重覆進行30次PIV流場量測,而為了確保每次進氣條件一致,本實驗自製一組簡單但精準的進氣系統,確保相同體積的氣體注入不同黏度溶液水槽中,並對氣泡的幾何形狀分析,單顆氣泡的形狀再現性高。
      PIV使用高速攝影機搭配105 mm鏡頭、設定PIV相關參數,分別拍攝XZ平面(FOV = 50 mm x 34 mm),YZ平面(FOV = 6 mm x 15 mm),在極微小的觀測面,能有效分析其速度場,再由速度場獲得剪切速率場(shear rate),並透過流變儀量測溶液以及使用Sisko模式擬和溶液黏度與剪切速率關係計算其剪應力場。
      在氣泡前方流場從時序列分析可發現,流場再現性相當高也十分穩定,不同次拍攝的流場變化幾乎一致,流體最大速度近乎氣泡浮昇速度,三者溶液相比結果差不多;在氣泡尾部流場,同一溶液每次拍攝在微觀氣泡形狀上有些許不同以及液體黏度不同以致,低黏度流場發展紊亂,高黏度流場發展相對穩定;在時序列、速度剖面分析也發現,氣泡下方的流場速度逐漸大於氣泡本體上升的速度,原因來自於兩側向下的流體因渦旋的產生,將部分能量傳回水槽中間區域,使得中間區域的流速逐漸大於氣泡本體速度,隨後流場遞緩。
      在清水、0.05% CMC、0.15% CMC,相同氣泡條件3毫升氣泡所引起的流場,儘管清水的剪切速率較大,剪切速率較低的0.15% CMC溶液流場對壁面會產生較大的剪應力最大可達1.4 Pa左右,0.05% CMC最大剪應力約可達0.8 Pa,而清水最大剪應力約可達0.6 Pa。

    This study aims to investigate the characteristics of the flow field caused by a single rising bubble between parallel walls (i.e., the virtual geometry in flat-sheet membrane bioreactor). Particle Image Velocimetry (PIV) and multi-time interval velocity calculation method were conducted to measure the flow field caused by a 3 ml bubble. To simulate the rheological behavior of sludge , a transparent rheological fluid, carboxymethyl cellulose (CMC), was prepared in various level (0% - 0.15%) for PIV measurement. The time-series analysis result showed that the velocity increased exponentially followed by achieving bubble buoyancy velocity with high reproducibility among 30 times repeated tests for each case when the rising bubble closing to the measuring point from bottom. However, the following flow field varied a lot after bubble passing through the point among three tested CMC solutions. Briefly, maximum rising velocity could be 1.4 – 2.0 times higher than bubble buoyancy velocity both in long side and short side of rectangular tank, and wake developed with high turbulence in clean water while the velocity dropped down quickly with less turbulence in 0.15% CMC solution. Considering the shear stress near the wall, the maximum shear stress was found about 1.4 Pa for 0.15% CMC, 0.8 Pa for 0.05% CMC, and only 0.6 Pa for clean water according to Sisko model for non-Newtonian fluid, even though both velocity and corresponded shear rate were higher in clean water rather than in high viscosity CMC solution.

    中文摘要 I Abstract III 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號說明 XXI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 MBR概述與節能關鍵課題 2 1.2.2 氣泡流概述 7 1.2.3 氣泡流場觀測方法 10 1.2.4 泰勒氣泡相關之研究 13 1.3 研究目的與內容 16 1.4 論文架構 18 第二章 實驗設計、佈置與步驟 19 2.1 實驗設計 19 2.1.1 相關參數設定 19 2.2 實驗佈置 23 2.2.1 水槽與進氣系統 23 2.2.2 雷射光源系統 26 2.2.3 高速攝影機與鏡頭 28 2.2.4 流場追蹤物質 29 2.2.5 相關軟體 30 2.2.6 流變儀 31 2.2.7 其他 32 2.3 實驗步驟 32 第三章 資料分析 35 3.1 PIV分析原理 35 3.1.1 PIV應用 35 3.1.2 PIV量測系統 36 3.1.3 超解析遞迴法(recursive super-resolution method) 37 3.1.4 多時間間距速度計算法(multi-time interval method) 38 3.1.5 固定邊界之影像處理方法 39 3.1.6 PIV設定 40 3.2 非牛頓流體流變特性 41 3.2.1 流體類型分析 41 3.2.2 非牛頓流體模擬 43 3.3 流場可視化 44 3.4 相位平均分析 45 3.5 時序列分析 48 第四章 結果與討論 49 4.1 全景氣泡上升速度發展 49 4.2 氣泡最大高度統計與形狀 52 4.3 XZ平面流場特性 55 4.3.1 流場可視化 55 4.3.2 氣泡上升速度 59 4.3.3 相位平均分析 60 4.3.4 時序列分析 69 4.4 YZ平面流場特性 73 4.4.1 流場可視化 73 4.4.2 相位平均分析 75 4.4.3 時序列分析 77 4.4.4 速度剖面 83 4.4.5 剪力分析 88 第五章 結論與建議 95 5.1 結論 95 5.2 建議 97 第六章 參考文獻 99 附錄 104

    [1] Araújo, J., Miranda, J., Pinto, A., & Campos, J. (2012). Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids. International Journal of Multiphase Flow, 43, 131-148.
    [2] Böhm, L., & Kraume, M. (2015). Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems. Journal of Membrane Science, 475, 533-544. doi:10.1016/j.memsci.2014.11.003
    [3] Böhm, L., Kurita, T., Kimura, K., & Kraume, M. (2014). Rising behaviour of single bubbles in narrow rectangular channels in Newtonian and non-Newtonian liquids. International Journal of Multiphase Flow, 65, 11-23.
    [4] Bugg, J., & Saad, G. (2002). The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results. International Journal of Multiphase Flow, 28(5), 791-803.
    [5] Campos, J., & De Carvalho, J. G. (1988). An experimental study of the wake of gas slugs rising in liquids. Journal of Fluid Mechanics, 196, 27-37.
    [6] Cazarez-Candia, O., Benítez-Centeno, O., & Espinosa-Paredes, G. (2011). Two-fluid model for transient analysis of slug flow in oil wells. International Journal of Heat and Fluid Flow, 32(3), 762-770.
    [7] Clanet, C., Héraud, P., & Searby, G. (2004). On the motion of bubbles in vertical tubes of arbitrary cross-stions: some complements to the Dumitrescu-Taylor problem. Journal of Fluid Mechanics, 519, 359.
    [8] Collins, R. (1965). A simple model of the plane gas bubble in a finite liquid. Journal of Fluid Mechanics, 22(4), 763-771.
    [9] Cowen, E. A. and S. G. Monismith. (1997). A hybrid digital particle tracking velocimetry technique. Experiments in Fluids, Vol. 22, pp. 199-21.
    [10] Davies, R., & Taylor, G. I. (1950). The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 200(1062), 375-390.
    [11] Drews, A. (2010). Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1-2), 1-28.
    [12] Dumitrescu, D. T. (1943). Strömung an einer Luftblase im senkrechten Rohr. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 23(3), 139-149.
    [13] Ducom, G., & Cabassud, C. (2003). Possible effects of air sparging for nanofiltration of salted solutions. Desalination, 156(1-3), 267-274.
    [14] Falvey, H. T. (1980). Air-water flow in hydraulic structures. Rep. No.41, U.S. Dept. of the Interior, Water and Power Resources Services, Denver.
    [15] Gaucher, C., Legentilhomme, P., Jaouen, P., Comiti, J., & Pruvost, J. (2002). Hydrodynamics study in a plane ultrafiltration module using an electrochemical method and particle image velocimetry visualization. Experiments in fluids, 32(3), 283-293.
    [16] Gaucher, C., Jaouen, P., Legentilhomme, P., & Comiti, J. (2003). Influence of fluid distribution on the ultrafiltration performance of a ceramic flat sheet membrane. Separation science and technology, 38(9), 1949-1962.
    [17] Gould, T. L. (1974). Vertical two-phase steam-water flow in geothermal wells. Journal of Petroleum Technology, 26(08), 833-842.
    [18] Guo, X., Li, C., Qiu, G., & Tian, R. (2015). Characteristics of flow field near membrane surface based on particle image velocimetry technology. Transactions of the Chinese Society of Agricultural Engineering, 31(1), 91-97.
    [19] Judd, S. (2010). The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment: Elsevier.
    [20] Kang C.-W., Quan S., Lou J. (2010). Numerical study of a Taylor bubble rising in stagnant liquids Phys. Rev. E, 81 , Article 066308.
    [21] Krzeminski, P., van der Graaf, J. H., & van Lier, J. B. (2012). Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65(2), 380-392.
    [22] Lauchlan, C., Escarameia, M., May, R., Burrows, R., & Gahan, C. (2005). Air in pipelines-A literature review.
    [23] Le-Clech, P., Chen, V., & Fane, T. A. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1-2), 17-53.
    [24] Mayor, T., Ferreira, V., Pinto, A., Campos, J. (2008). Hydrodynamics of gas–liquid slug flow along vertical pipes in turbulent regime–An experimental study. Int. J. Heat Fluid Flow, 29 (2008), pp. 1039-1053.
    [25] Mercier, M., Maranges, C., Fonade, C., & Lafforgue‐Delorme, C. (1998). Yeast suspension filtration: flux enhancement using an upward gas/liquid slug flow—application to continuous alcoholic fermentation with cell recycle. Biotechnology and bioengineering, 58(1), 47-57.
    [26] Miyahara, T., Tsuchiya, K., & Fan, L.-S. (1988). Wake properties of a single gas bubble in three-dimensional liquid-solid fluidized bed. International Journal of Multiphase Flow, 14(6), 749-763.
    [27] Morgado, A., Miranda, J., Araújo, J., & Campos, J. (2016). Review on vertical gas–liquid slug flow. International Journal of Multiphase Flow, 85, 348-368.
    [28] Mori, N. and K. A. Chang. (2003). Introduction to MPIV,” PIV toolbox in MATLAB, version 0.95, pp. 1-13.
    [29] Nagaoka, H., Tanaka, A., & Toriizuka, Y. (2003). Measurement of effective shear stress working on flat-sheet membrane by air-scrabbling. Water Science and Technology: Water Supply, 3(5-6), 423-428.
    [30] Ndinisa, N., Fane, A., & Wiley, D. (2006). Fouling control in a submerged flat sheet membrane system: part I–bubbling and hydrodynamic effects. Separation science and technology, 41(7), 1383-1409.
    [31] Nogueira, S., Sousa, R., Pinto, A., Riethmuller, M., & Campos, J. (2003). Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems. Experiments in fluids, 35(6), 598-609.
    [32] Ozaki, N., & Yamamoto, K. (2001). Hydraulic effects on sludge accumulation on membrane surface in crossflow filtration. Water Research, 35(13), 3137-3146.
    [33] Polonsky, S., Shemer, L., & Barnea, D. (1999). The relation between the Taylor bubble motion and the velocity field ahead of it. International Journal of Multiphase Flow, 25(6-7), 957-975.
    [34] Phattaranawik, J., Fane, A. G., Pasquier, A. C., & Bing, W. (2007). Membrane bioreactor with bubble‐size transformer: Design and fouling control. AIChE journal, 53(1), 243-248.
    [35] Prasser, H.-M., Bolesch, C., Cramer, K., Ito, D., Papadopoulos, P., Saxena, A., & Zboray, R. (2016). Bubbly, slug, and annular two-phase flow in tight-lattice subchannels. Nuclear Engineering and Technology, 48(4), 847-858.
    [36] Prieske, H., Drews, A., & Kraume, M. (2008). Prediction of the circulation velocity in a membrane bioreactor. Desalination, 231(1-3), 219-226.
    [37] Ratkovich, N., Chan, C. C., Berube, P. R., & Nopens, I. (2010). Investigation of the effect of viscosity on slug flow in airlift tubular membranes in search of a sludge surrogate. Water Sci Technol, 61(7), 1801-1809. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20371939. doi:10.2166/wst.2010.118
    [38] Rouhani, S., & Sohal, M. (1983). Two-phase flow patterns: A review of research results. Progress in Nuclear Energy, 11(3), 219-259.
    [39] Shi, L. L., Liu, Y. Z., & Wan, J. J. (2010). Influence of wall proximity on characteristics of wake behind a square cylinder: PIV measurements and POD analysis. Experimental Thermal and Fluid Science, 34(1), 28-36.
    [40] Sofia, A., Ng, W., & Ong, S. (2004). Engineering design approaches for minimum fouling in submerged MBR. Desalination, 160(1), 67-74.
    [41] Sousa, R., Riethmuller, M., Pinto, A., & Campos, J. (2005). Flow around individual Taylor bubbles rising in stagnant CMC solutions: PIV measurements. Chemical Engineering Science, 60(7), 1859-1873.
    [42] Tacke, D., Pinnekamp, J., Prieske, H., & Kraume, M. (2008). Membrane bioreactor aeration: investigation of the velocity flow pattern. Water Science and Technology, 57(4), 559-565.
    [43] Talvy, C. A., Shemer, L., & Barnea, D. (2000). On the interaction between two consutive elongated bubbles in a vertical pipe. International Journal of Multiphase Flow, 26(12), 1905-1923.
    [44] Tihon, J., & Ezeji, K. (2019). Velocity of a large bubble rising in a stagnant liquid inside an inclined rectangular channel. Physics of Fluids, 31(11), 113301.
    [45] Tomiyama, A., Sou, A., Sakaguchi, T. (1996). Numerical simulation of a Taylor bubble in a stagnant liquid inside a vertical pipe. JSME Int. J. Ser. B Fluids Therm. Eng., 39 , pp. 517-524.
    [46] Van Hout, R., Gulitski, A., Barnea, D., & Shemer, L. (2002). Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water. International Journal of Multiphase Flow, 28(4), 579-596.
    [47] Visvanathan, C., Aim, R. B., & Parameshwaran, K. (2000). Membrane separation bioreactors for wastewater treatment. Critical reviews in environmental science and technology, 30(1), 1-48.
    [48] Wallis, G. B. (1969). One-dimensional two-phase flow.
    [49] Yamamoto, K., Hiasa, M., Mahmood, T., & Matsuo, T. (1988). Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. In Water Pollution Research and Control Brighton (pp. 43-54): Elsevier.
    [50] Yamanoi, I., & Kageyama, K. (2010). Evaluation of bubble flow properties between flat sheet membranes in membrane bioreactor. Journal of Membrane Science, 360(1-2), 102-108.
    [51] Yeo, A. P., Law, A. W., & Fane, A. T. (2007). The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry. Journal of Membrane Science, 304(1-2), 125-137.
    [52] Zhang, K., Cui, Z., & Field, R. W. (2009). Effect of bubble size and frequency on mass transfer in flat sheet MBR. Journal of Membrane Science, 332(1-2), 30-37.
    [53] Zukoski, E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837.
    [54] 謝世圳(2008),建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討,國立中興大學土木工程學系博士論文,1-159。
    [55] 范姜仁茂、莊連春、曾迪華、廖述良、游勝傑、梁德明(2009),薄膜生物反應器(MBR)於廢水處理之技術評析,工業污染防治,109期。
    [56] 井上美穂、長岡裕、酒井駿治、森田優香子(2015),平膜状浸漬型 MBR において曝気によるモジュールの振動がファウリング抑制効果に与える影響,土木学会論文集 G (環境),71(7),III_437-III_446。
    [57] 黃國書、何宗浚、陳彥龍、陳緻紘、黃良銘、蕭士俊(2019),薄膜生物反應器曝氣抗垢與節能最佳化操作與研究(1/2),經濟部水利署。

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE