簡易檢索 / 詳目顯示

研究生: 康淑雰
Kang, Shu-Fen
論文名稱: 發光二極體驅動應用之電流模式升壓型穩壓器設計與驗證
Design and Verification of Current-Mode Boost Regulator for LED Driver Application
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 電流模式控制升壓型穩壓器發光二極體驅動器顯示器背光類比/數位調光控制
外文關鍵詞: current-mode control, boost converter, WLED driver, display backlight, analog dimming, digital dimming
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討升壓型穩壓器應用於可調光發光二極體驅動器之議題,內文分為兩部份,第一部份針對電流模式控制之切換式升壓穩壓器,建立系統性的設計與分析流程,包含系統模型、補償器設計、電晶體層次設計、晶片下線,最後藉由晶片量測結果來驗證此設計流程的正確性。量測結果證明在輸入電壓於4.2~5.5V的鋰電池供電範圍內,在30mA~330mA負載電流範圍內,此轉換器可以穩定的提供36V的輸出電壓,暫態響應約為80μs,最高轉換效率為89.4 %。藉由頻域量測,驗證了本設計與分析流程的正確性,同時證明系統的穩定性。本電流模式控制升壓轉換器使用TSMC 0.25μm HVCMOS製程進行設計,外接電感與輸出電容分別為22μH與2.2μF。
    第二部份提出了具混合調光功能之白光發光二極體驅動器,此驅動器採用電流模式控制升壓轉換器為前端電壓驅動電路,後端電路為混合調光機制電路,整合了類比、數位調光功能,不僅有效降低晶片封裝腳數,亦減少額外的調光控制線路之繞線複雜度,以上兩點均可降低晶片成本。晶片量測以發光二極體為負載,其單顆功率小於1 W,驅動電壓與全亮度電流分別為2.8V與100mA。於輸入電壓4.2~12V條件下,可觀測到隨著輸入類比/數位之調光訊號大小,發光二極體有明顯亮暗之差,驗證了混合調光之功能,其中數位調光頻率最大可達100k Hz,最高轉換效率為88.2%。

    This study addressed the issue of driving WLED by a boost regulator with dimming function. This thesis is composed of two parts. The first part focuses on the current-mode control switching boost regulator. Systematic design procedure and analysis flow are presented with system modeling, compensator design, transistor level design and chip implementation. The design procedure is verified by the chip’s measurement results. The measurement result show that this converter can operate with load current from 30mA-330mA in a supply voltage from 4.2-5.5V and the output voltage of 36V. The transient response time is about 80μs and the highest efficiency is 89.4%. By the loop gain measurement, the correctness of the analysis flow is verified. The stability of proposed buck converter was guaranteed by the loop gain measurement, too. This converter has been designed and fabricated with TSMC 1P6M 0.25μm HVCMOS process. The off chip inductor and the output capacitor are 22μH and 2.2μF.
    The second part proposed a white light emitting diode driver with hybrid dimming. The driver used a current-mode controlled boost converter as the pre-regulator. And the hybrid dimming approach is proposed for processing both analog and digital dimming signals using only one pin. This technique reduces the wire routing complexity and the cost of footpins. Use WLED as load in chip measurement, with power dissipation lower than 1 Watt of each. And the forward voltage and forward current are 2.8 Volt and 100mA, respectively. Within VIN ranging of 4.2-12V, the luminance of WLEDs will change by analog or digital dimming signal. The hybrid dimming function is verified. The max PWM dimming frequency is 100k Hz and the highest conversion efficiency is 88.2%.

    摘要 III ABSTRACT V 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 背景與動機 1 1.2 相關研究發展 4 1.3 目標與貢獻 5 1.4 論文架構簡介 5 第二章 切換式升壓穩壓器簡介 7 2.1 系統操作原理 7 2.1.1 連續導通操作模式 7 2.1.2 不連續導通模式 11 2.1.3 開迴路頻率響應分析 14 2.1.4 右半平面零點效應 15 2.1.5 暫態分析 17 2.2 脈波寬度調變控制介紹 18 2.2.1 電壓控制模式 18 2.2.2 電流控制模式 20 2.2.3 不連續導通模式常採用之控制 24 2.3 近年研究現況 24 第三章 峰值電流控制模式升壓型穩壓器之設計與實現 29 3.1 系統架構與規格 29 3.2 系統操作原理及設計 30 3.2.1 系統操作與小訊號分析 30 3.2.2 補償器設計 33 3.3 電路設計與模擬 37 3.3.1 補償器 38 3.3.2 比較器 39 3.3.3 電感電流偵測電路 40 3.3.4 時脈與鋸齒波產生器 42 3.3.5 電壓/電流轉換器 43 3.3.6 緩啟動電路 44 3.3.7 功率電晶體與閘極驅動電路 45 3.4 晶片佈局與後模擬驗證 47 3.4.1 晶片佈局 47 3.4.2 後模擬驗證 48 3.5 晶片量測規劃與測試 50 3.5.1 量測規劃 50 3.5.2 量測結果 52 3.6 成果比較與討論 56 第四章 發光二極體驅動器簡介 58 4.1 發光二極體特性及驅動方式 58 4.1.1 發光二極體特性 58 4.1.2 發光二極體應用 59 4.1.3 發光二極體驅動方式 60 4.2 直流-直流發光二極體驅動電路架構 62 4.2.1 定電壓源驅動架構 62 4.2.2 可變電壓源驅動架構 64 4.2.3 發光二極體驅動器調光機制 67 4.2.4 驅動器架構比較 72 4.3 發光二極體驅動器近年研究現況討論 74 4.3.1 國內研究討論 74 4.3.2 國外研究討論 78 4.3.3 近年研究討論 79 第五章 具類比/數位混合調光功能之發光二極體驅動器 81 5.1 系統目標與應用 81 5.2 系統架構與規格 82 5.3 系統操作原理及設計 83 5.3.1 緩啟動階段 83 5.3.2 調光模式 84 5.3.3 過電壓與過電流保護電路 86 5.4 電路設計與模擬 87 5.4.1 具類比/數位調光功能控制器電路 87 5.4.2 帶差參考電路 89 5.4.3 緩啟動電路 91 5.5 晶片佈局與後模擬驗證 92 5.5.1 晶片佈局 92 5.5.2 後模擬驗證 92 5.6 晶片量測規劃與測試 95 5.6.1 量測規劃 95 5.6.2 量測結果 98 5.7 成果比較與討論 102 第六章 結論與展望 104 6.1 總結與貢獻 104 6.2 未來工作與研究方向 104 參考文獻 107 附錄 111

    [1] Datasheet: TPS65072 Single Chip Power Solution for Battery Powered Systems, Texas Instruments, [Online]. Available: http://www.ti.com/lit/ds/symlink/tps65072.pdf
    [2] M. Day, “LED-driver considerations,” Applications Journal Analog and Mixed-Signal Products, 2004. [Online]. Available: http://www.ti.com/lit/an/slyt084/slyt084.pdf
    [3] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer Academic, 2001.
    [4] “Understanding Boost Power Stages in Switchmode Power Supplies,” Application Notes, Texas Instruments, 1999. [Online]. Available: http://www.ti.com/lit/an/slva061/slva061.pdf
    [5] C. Basso. The Right-Half-Palne-Zero, a Two-Way Control Path, Available: http://cbasso.pagesperso-orange.fr/Downloads/Papers/RHPZ,%20a%20two%20way%20control%20path.pdf
    [6] “Voltage Mode Boost Converter Small Signal Control Loop Analysis Using the TPS61030,” Application Notes, Texas Instruments, 2009.
    [7] “Current Mode Modeling for Peak, Valley and Emulated Control Methods,” Application Notes, National Semiconductor, [Online]. Available: http://www.national.com/assets/en/appnotes/CurrentModeModelingReferenceGuide.pdf
    [8] Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V Integrated Current Mode Boost Converter in Standard 3.3/5-V CMOS Technologies,” IEEE J. Solid-State Circuits, vol. 40, pp. 2265-2274, Nov. 2005.
    [9] T.-Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V Input Discontinuous- Conduction-Mode Boost Converter with CMOS-Control Rectifier,” IEEE J. Solid-State Circuits, vol. 43, pp. 2036-2046, Sep. 2008.
    [10] Y.-K. Luo, C.-C. Chiou, C.-H. Wu, K.-H. Chen, and W.-C. Hsu, “Transient Improvement by Window Transient Enhancement and Overshoot Suppression Techniques in Current Mode Boost Converter” IEEE Trans. Power Electronics, vol. 26, pp. 2753-2761, Oct. 2011.
    [11] H.-H. Huang, C.-Y. Hsieh, J.-Y. Liao, and K.-H. Chen, “Adaptive Droop Resistance Technique for Adaptive Voltage Positioning in Boost DC-DC Converters,” IEEE Trans. Power Electronics, vol. 26, pp. 1920-1932, Jul. 2011.
    [12] Y.-K. Luo, Y.-P. Su, Y.-H. Lee, and K.-H. Chen, “Time-Multiplexing Current Balance Interleaved Current-Mode Boost DC-DC Converter for Alleviating the Effects of Right-Half-Plane Zero,” IEEE Trans. Power Electronics, vol. 27, pp. 4098-4112, Sep. 2012.
    [13] C.-S. Lee, Y.-J. Oh, K.-Y. Na, Y.-S. Kim, and N.-S. Kim, “Integrated BiCMOS Control Circuits for High-Performance DC-DC Boost Converter,” IEEE Trans. Power Electronics, vol. 28, pp. 2596-2603, May. 2013.
    [14] R. B. Ridley, B.-H. Cho, and C.-F. Lee, “Analysis and Interpretation of Loop Gains of Multiloop-Controlled Switching Regulators,” IEEE Trans. Power Electronics, vol. 3, pp.489-499, Oct. 1988.
    [15] B. Bryant and M. K. Kazimierezuk, “Modeling the Closed-Current Loop of PWM Boost DC-DC Converters Operating in CCM with Peak Current-Mode Control,” IEEE Trans. Circuits Syst. I, vol. 52, Nov. 2005.
    [16] Datasheet: ADP162 Constant-Frequency, Current-Mode Step-Up DC/DC Controller. [Online]. Available: http://www.analog.com/static/imported-files/ data_sheets/ADP1621.pdf
    [17] C.-F. Lee and P. K. T. Mok, “A Monolithic Current-Mode CMOS DCDC Converter with On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 3-14, Jan. 2004.
    [18] X. Xu, M. Zhao, and X. Wu, “On-Chip Boost Regulator with Projected Off- and On-Time Control,” Journal of Zhejiang University, vol. 10(8), pp. 1223-1230, 2009.
    [19] F.-F. Ma, W.-Z. Chen, and J.-C Wu, “A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuits,” IEEE Trans. Power Electronics, vol. 22, pp. 1836-1846, Sep. 2007.
    [20] Datasheet: RT9266 Tiny Package, High Efficiency, Step-up DC/DC Converter, RichTek, [Online]. Available: http://www.richtek.com/product_detail.jsp?s=270
    [21] H. van der Broeck, G. Sauerlander, and M. Wendt, “Power Driver Topologies and Control Schemes for LEDs,” in Proc. IEEE Applied Power Electronics Conference, 2007, pp. 1319-1325.
    [22] 謝遠達, “應用於液晶顯示器背光模組之高調光解析度發光二極體驅動器,” 國立成功大學電機工程學系博士論文, 2012.
    [23] I.-H. Oh, “An Analysis of Current Accuracies in Peak and Hysteretic Current Controlled Power LED Drivers,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 572-577.
    [24] J. Lu and X. Wu, “A Novel Multiple Modes PWM Controller for LEDs,” in Proc. IEEE International Symposium on Circuits and Systems, 2009, pp. 1767-1770.
    [25] C.-H. Wu and C.-L Chen, “High-Efficiency Current-Regulated Charge Pump for a White LED Driver,” IEEE Trans. Circuits Syst. II, vol. 56, pp. 763-767, 2009.
    [26] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A High Efficiency Boost White LED Driver for Portable Electronics Applications,” in Proc. International Symposium on Next-Generation Electronics, 2010, pp. 13-16.
    [27] Dtatasheet: MAX16819 2MHz High-Brightness LED Drivers with High-Side Current Sense and 5000:1 Dimming, MAXIM, [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX16819-MAX16820.pdf
    [28] Datasheet: RT9288A PWM Step-Up DC/DC Controller for White-LED Driver, [Online]. Available: http://2.dx1.elecfans.com/dm/elec/DS9288AB-02C-elecfans.pdf
    [29] C.-C. Lin and K.-H Chen, “A High Accuracy Current-Balanced Control Technique for LED Backlight,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 4202-4206.
    [30] H.-J. Chiu, Y.-K. Lo, J.-T. Chen, S.-J. Cheng, C.-Y. Lin, S.-C. Mou, “A High-Efficiency Dimmable LED Driver for Low-Power Lighting Applications,” IEEE Trans. Industrial Electronics, vol. 57, pp. 735-743, Feb. 2010.
    [31] C.-H. Liu, C.-Y. Hsieh, T.-J. Tai, and K.-H. Chen, “SAR-Controlled Adaptive Off-Time Technique Without Sensing Resistor for Achieving High Efficiency and Accuracy LED Lighting System,” IEEE Trans. Circuits Syst. I, vol. 57, pp. 1384-1394, Jun. 2010.
    [32] Datasheet: RT8452 High Voltage High Current LED Driver Controller for Boost or Buck-Boost Topology, RichTek, [Online]. Available: http://bbs.dianyuan.com/bbs/u/75/950021237267192.pdf
    [33] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A High Current Accuracy Boost White LED Driver Based on Offset Calibration Technique,” IEEE Trans. Circuits Syst. II, vol. 58, pp. 244-248, Apr. 2011.
    [34] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A High-Dimming-Ratio LED Driver for LCD Backlights,” IEEE Trans. Power Electronics, vol. 27, pp. 4562-4570, Nov. 2012.
    [35] J.-J. Chen, B.-H. Hwang, Y.-R. Guo, Y.-S Hwang, and C.-C. Yu, “A high-efficiency WLED driver using light-balanced-controlled techniques with current-locked loops,” Analog Integr. Circ. Sig. Process, vol. 72, pp. 363-373, Jun. 2012.
    [36] Soek-In. Hong, J.-W. Han, D.-H. Kim, and Oh-Kyong Kwon, “A Double-Loop Control LED Backlight Driver IC for Medium-Sized LCDs,” in Proc. IEEE International Solid-State Circuits Conference, 2010, pp. 116-117.
    [37] S. Rao, Q. Khan, S. Bang, D. Swank, A. Rao, W. Mclntyre, and K. Hanumolu, “A 1.2-A Buck-Boost LED Driver With On-Chip Error Averaged SenseFET-Based Current Sensing Technique,” IEEE J. of Solid-State Circuits, vol. 46, pp. 1-12, Dec. 2011.
    [38] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A High Efficiency Boost White LED Driver with an Integrated Schottky Diode,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems, 2010, pp. 660-663.
    [39] Y.-T. Hsieh, B.-D. Liu, J.-F. Wu, C.-L. Fang, H.-H. Tsai, and Y.-Z. Juang, “A SEPIC LED Driver with a Hybrid Dimming Technique for Road Vehicles,” in Proc. Power Electronics and Applications, 2011, pp. 1-7.
    [40] P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani, and A. Baschiritto, “0.18um CMOS 91%-Efficiency 0.1-to-2A Scalable Buck-Boost DC-DC Converter for LED Drivers,” in Proc. IEEE International Solid-State Circuits Conference, 2012, pp. 280-282.
    [41] C.-H. Chang, H.-M. Chen, and R. C. Chang, “A 2.3V CMOS Monolithic, 84% Efficiency PFM Control DC-DC Boost Converter for Whillte LEDs Driver IC”, in Proc. Power Electronics and Drives Systems, 2005, pp. 833-837.
    [42] L.-C. Yu, Y. Zhu, M. Chen, and T. Yoshihara, “High efficiency multi-channel LED driver based on SIMO switch-mode converter,” in Proc. International SoC Design Conference, 2012, pp.483-486.
    [43] C.-Y. Hsieh and K.-H. Chen, “Boost DC-DC Converter With Fast Reference Tracking (FRT) and Charge-Recycling (CR) Techniques for High-Efficiency and Low-Cost LED Driver” IEEE J. Solid-State Circuits, vol.44, pp.2568-2580, Sep. 2009.

    下載圖示 校內:2015-02-05公開
    校外:2018-02-05公開
    QR CODE