簡易檢索 / 詳目顯示

研究生: 楊昀哲
Yang, Yun-Che
論文名稱: 規則波引致單一矩形潛體前之液化細砂質海床行為試驗研究
Experimental Studies on Regular Wave-Induced Behaviors of a Fluidized Sandy Seabed in Front of a Rectangular Submerged Obstacle
指導教授: 歐善惠
Ou, Shan-Hwei
臧效義
Tzang, Shiaw-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 103
中文關鍵詞: 掏刷液化潛體
外文關鍵詞: submerged obstacle, fluidized, scour
相關次數: 點閱:137下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究針對波浪未發生碎波之前提下,嘗試在試驗海床上增設一矩形潛體模型進行量測規則波通過單一潛體時所引致之液化砂質海床之行為變化,研究重點在於海床液化時之砂面時序列變化與潛體周圍相關特性變化之探討。
      應用紅外線砂面測定儀量測堤前5 cm處的砂面時序列變化並於每一試次試驗後量測潛體周圍地形變化,配合潛體下方土槽內部不同深度之孔隙水壓,反應土壤內部之反應。於潛體堤前5 cm處架設一支超音波式Doppler流速儀以量測近底床1 cm處流速之變化。潛體堤頂正上方及其前後水面處則分別架設波高計以量測波浪通過潛體前後之水面波形變化及推求反射率。且在潛體堤前與堤後5 cm 及10 cm處架設距離底床上方1 cm 之光學式濃度計以量測漂砂濃度值及其漂砂方向。試驗波浪條件為規則波浪包括單頻規則波浪與規則波群兩種。
      綜合試驗結果得到海床砂面在非液化反應時,呈現一水平直線無起伏的變化,而在海床砂面有液化反應時,則會與同斷面上的水面波形做相似週期的振動行為;且從單頻波浪的試驗中得知,隨著液化深度越深,海床砂面的最大振幅越大。相對於海床砂面的變化,在試驗土槽上方的水面波形,則會有振幅縮小的現象,且離潛體較近的水面波形,振幅縮小的幅度較大。懸浮漂砂濃度在海床土壤發生液化反應時,在堤前部分會有明顯的抬升,而在堤後的部份則是受潛體的影響,濃度抬升值不若堤前。

      In this experimental study, a rectangular submerged obstacle was added on the test seabed for measuring behaviors of a fluidized sandy bed surface. It is particularly aimed at studying time series of motions of a fluidized bed surface and the results of scours of foundation soil in the front and lee sides of a submerged obstacle.
      The instrumentation consists of a infrared optical altimetry for measuring the time series of a near fluidized-bed surface motions 5 cm in front of the obstacle and scour depth distributions around the obstacle. Six Pore pressure transducers were installed inside the foundation bed soils to display typical seabed responses. A 3D acoustic Doppler velocimetry was adopted to measure velocity fields in front of the obstacle at 1 cm above the bed. Six wave gauges were adopted to collect wave transformations on both sides of the obstacle. Four optical sediment-concentration probes at 1 cm above the bed were used for studying sediment transport. Two types of waves, i.e. monochromatic waves and regular wave groups, were generated in present laboratory flume tests.
      The results illustrate that no surface motions were found from an unfluidized bed. However, relatively significant motions with the same frequency of over-loading waves started to occur after a bed had been fluidized. The amplifications of bed-surface oscillation grew larger as thickness of fluidized soil layers increased. Meanwhile during a fluidized response, wave heights over the fluidized bed relative to those entering the soil basin were clearly found to decrease by about ?% to ?%, especially getting closer to the obstacle. Similarly, the suspended sediment concentrations increased more significantly in the front than in the lee of the obstacle after the occurrence of foundation fluidization.

    摘 要 I ABSTRACT II 致 謝 III 目 錄 IV 圖 目 錄 VI 表 目 錄 X 符 號 說 明 XI 第一章 緒論 1 1.1 研究目的 1 1.2 相關研究背景 2 1.2.1 線性海床反應特性 2 1.2.2 液化定義 2 1.3 海床液化與懸浮漂砂 4 1.3.1 單頻波浪 4 1.3.2 規則波群 8 1.4 波浪在潛體周遭引致之相關反應 11 1.5 本文組織 12 第二章 試驗工作 13 2.1 試驗佈置與步驟 13 2.2 儀器率定 21 3.3 試驗條件 23 2.4 資料處理與分析 25 2.4.1 資料處理 25 2.4.2 波群資料分析 25 第三章 液化海床砂面行為 31 3.1 液化水平海床 31 3.2 潛體周圍海床 37 3.2.1 規則波 37 3.2.2 規則波群 50 3.3 海床砂面 62 第四章 分析與討論 66 4.1液化海床砂面振動 66 4.2 波浪變形 78 4.3 掏刷分佈 95 第五章結論與建議 99 5.1結論 99 5.2建議 99 參考文獻 101

    1.Biot, M.A. (1941), “General theory of three-dimensional consolidation.” J.
    Appl. Phys., Vol. 12, pp. 155-165.
    2.Biot, M.A. (1956), “Theory of propagation of elastic waves in fluid-saturated
    porous solid:1 low-frequency ranger.” J. Acoust. Soc., Vol. 28, pp. 168-191.
    3.Clukey, E.C., F.H. Kulhawy and P.L.-F. Liu (1983), “Laboratory and field
    investigation of wave-sediment interaction.” Joseph H. DeFrees Hydraulics
    Laboratory Rep. 83-1, School of Civil and Environmental Eng., Cornell
    University, Ithaca, N. Y.
    4.Foda, M.A. and S.Y. Tzang (1994), “Resonant fluidization of silty soil by
    water waves.” J. Geophys. Res. 99 (C10), pp. 20463-20475.
    5.Funke, E.R. and E.P.D. Mansard (1980), “On the synthesis of realistic sea
    state.” Proc. 17th Int. Conf. on Coastal Eng., Sydney, pp. 2974-2991.
    6.Funke, E.R. and E.P.D. Mansard (1980), “The measurement of incident and
    reflected spectral using a least squares method.” Proc. 17th Int. Conf. on
    Coastal Eng., Sydney, ASCE, pp. 154-172.
    7.Heribich, J.B. and S.C. Ko (1967), “Scour of sand beaches in front of
    seawall.” Proc. 11th Int. Conf. on Coastal Eng., pp. 622-643.
    8.Hsu, J.R.C., Y. Tsuchiya and R. Silvester (1979), “Third-order approximation
    to short-crested waves.” J. Fluid Mech. , Vol. 90, part 1, pp. 179-196.
    9.Hsu, J.R.C., R. Silverster and Y. Tsuchiya (1980), “Boundary-layer velocities
    and mass transport in short-crested waves.” J. Fluid Mech., Vol.
    99,pp.321-342.
    10.Huang, C.M. (1996), “A fluidization model for cross-shore sediment
    transport.” Ph. D. Dissertation, University of California, Berkeley, U.S.A.
    11.Kang, Y.K., S. Takahashi, S. Yamamoto, H. Miura, T. Takano, K.I. Shimosako, K.
    Suzuki (1999), “Development of a new wave absorbing system using a sand
    liquefaction.” Report of the port and harbour research institute, Vol. 38,
    No. 3.
    12.Mei, C.C. and M.A. Foda (1981), “Wave-induced pore pressure in relation to
    ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3,
    pp. 123-150.
    13.Sato, S., N. Tanaka and I. Irie (1968), “Study on scouring at the foot of
    coastal structures.” Proc. 11th Int. Conf. on Coastal Eng. pp. 579-598.
    14.Sumer, B.M., J. Fredsoe, S. Christensen and M.T. Lind (1999),
    “Sinking/floatation of pipelines and other objects in liquefied soil under
    waves.” Coastal Eng., Vol. 38, pp.53-90.
    15.Sumer, B.M. and J. Fredsoe (1999), “The mechanics of scour in the marine
    environment” World scientific, pp.445-519
    16.Tzang, S. Y. (l992), “Water wave-induced soil fluidization in a cohesionless
    Seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
    17.Terzaghi, K. and R. B. Peck (1923), “Soil mechanics in engineering
    practice.”. 2nd. ed., John Wiley & Sons,New York.
    18.Van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud
    layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of
    Technology, The Netherlands.
    19.Yamamoto, T., H.L.K.H. Sellmeijer and E.V. Hijum (1978), “On the response of
    a pore-elastic bed to water waves.” J. Fluid Mech., Vol. 87, No. l, pp.
    193-206.
    20.蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水
    利及海洋工程學系碩士論文。
    21.彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研
    究」,國立成功大學水利及海洋工程學系碩士論文。
    22.簡德深 (2001),「簡諧波與線性波群引致之細砂質海床土壤液化反應與懸浮漂砂試驗研
    究」,國立成功大學水利及海洋工程學系碩士論文。
    23.賴宏祐 (2002),「淺水之規則波與波群引致之細砂質海床液化與懸浮漂砂試驗研究」,
    國立成功大學水利及海洋工程學系碩士論文。
    24.劉穎欣 (2002),「不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究」,國立成
    功大學水利及海洋工程學系碩士論文。
    25.陳勇隆 (2003),「近液化底床波浪引致之懸浮漂砂傳輸特性初步研究」,國立成功大學
    水利及海洋工程學系碩士論文。

    下載圖示 校內:2005-08-09公開
    校外:2006-08-09公開
    QR CODE