簡易檢索 / 詳目顯示

研究生: 盧鈺承
Lu, Yu-Cheng
論文名稱: 結合諧波控制法之應用雙環同軸型線圈於感應式/電容式複合型雙頻無線電能傳輸研究
Study on Inductive/Capacitive Composite Dual-Frequency Wireless Power Transfer for Double-Ring Coaxial-Coil Type Combined with Harmonic Control Method
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 雙環同軸型線圈耦合結構複合型雙頻無線電能傳輸複合型諧振補償網絡雙頻操作模式諧波控制法
外文關鍵詞: Double-ring coaxial-coil type coupling structure, Composite dual-frequency wireless power transfer, Composite compensation network, Dual-frequency operation mode, Harmonic control
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在於感應式無線電能傳輸系統架構上結合電容式無線傳能,俾以提升整體系統傳輸功率。本文所提系統使用雙環同軸型線圈作為主耦合架構,搭配雙頻複合型諧振補償網絡,並應用諧波控制法產生調變控制訊號激勵全橋驅動電路。所採雙頻操作模式,係以諧振補償網絡濾出調變控制訊號之基頻分量進行感應式磁場耦合傳能,同時以其11次高頻諧波分量進行電容式電場耦合傳能,實現感應式/電容式複合型雙頻無線電能傳輸。文中應用諧波控制法計算開關切換角度,令基頻與其11次諧波間頻率分量被消除,藉此產生調變控制訊號。接續分析雙環同軸型線圈耦合結構,並設計雙頻複合型諧振補償網絡,使雙環同軸型線圈於25 kHz與275 kHz驅動頻率下,分別以磁場耦合與電場耦合進行無線電能傳輸。文末設計結合串聯-串聯與雙邊LC之雙頻複合型諧振補償網路,研製800 W實驗系統電路,以驗證複合型雙頻無線電能傳輸之可行性。

    This thesis is aimed to composite capacitive wireless power transfer in an inductive wireless power transfer system to increase the overall system transmission power. The system proposed in this paper uses a dual-ring coaxial coil as the main coupling structure, with a dual-frequency composite resonant compensation network, and applies the harmonic control method to generate a modulation control signal to excite the full-bridge drive circuit. The dual-frequency operation mode adopted is to use the resonant compensation network to filter out the fundamental frequency component and its 11th high-frequency component of the modulation control signal, so that the dual-ring coaxial-coil can transmit power by magnetic field coupling and electric field coupling at the driving frequencies of 25 kHz and 275 kHz respectively. Finally, an 800 W experimental system circuit is developed to verify the feasibility of composite dual-frequency wireless power transfer.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 2 1-3 研究方法 9 1-4 論文大綱 10 第二章 非接觸式無線電能傳輸原理 11 2-1 前言 11 2-2 非接觸式無線電能傳輸技術 11 2-3 感應線圈非理想效應 15 2-3-1 集膚效應 16 2-3-2 近接效應 17 2-4 非接觸感應式與電容式耦合結構理論分析 18 2-4-1 感應式耦合結構電路模型推導 19 2-4-2 電容式耦合結構電路模型推導 22 2-5 複合型無線電能傳輸耦合線圈極性分析 24 2-5-1 複合型無線電能傳輸之電容式無線傳能分析 24 2-5-2 複合型無線電能傳輸之感應式無線傳能分析 26 2-5-3 複合型無線電能傳輸實功率分析 27 2-6 整體系統架構 28 第三章 複合型雙頻無線傳能系統分析與設計 30 3-1 前言 30 3-2 雙環同軸型耦合線圈模擬分析 30 3-3 調變控制訊號源 33 3-4 感應式無線傳能之諧振補償網絡分析 38 3-4-1 發射端諧振補償網絡分析 38 3-4-2 接收端諧振補償網絡分析 40 3-5 電容式無線傳能之發射端諧振補償網絡分析 42 3-5-1發射端諧振補償網絡分析 42 3-5-2接收端諧振補償網絡分析 43 3-6 複合型耦合結構與複合型諧振補償網絡分析 45 3-6-1複合型耦合結構特性分析 45 3-6-2複合型諧振補償網絡分析 46 3-7 整流濾波電路分析 51 第四章 複合型雙頻無線傳能系統硬體電路 53 4-1 前言 53 4-2 整體系統架構 53 4-3 複合型雙頻無線傳能系統激勵源電路 54 4-4 內外雙環同軸型線圈耦合結構製作 60 4-4-1 耦合線圈線材選擇 61 4-4-2 複合型耦合結構參數規格 63 4-5 複合型雙頻諧振補償網絡 65 4-6 複合型雙頻無線傳能系統設計流程 68 第五章 系統模擬與實驗結果 71 5-1 前言 71 5-2 Simplis電路模擬 71 5-3 諧波控制法模擬 76 5-4 非共構複合型雙頻無線傳能實驗 78 5-4-1 前言 78 5-4-2 非共構複合型雙頻無線傳能架構 79 5-4-3 系統規格及硬體電路 79 5-4-4 非共構複合型雙頻無線傳能實驗結果 81 5-4-5 全橋雙頻驅動訊號量測 81 5-4-6 複合型諧振補償網絡元件量測 84 5-5 複合型雙頻無線傳能實驗 89 5-5-1 前言 89 5-5-2 系統規格及硬體電路 89 5-5-3 複合型諧振補償網絡元件量測 92 第六章 結論與未來研究方向 95 6-1 結論 95 6-2 未來研究方向 96 參考文獻 97

    [1]“全球電動車產值爆發成長 2025年銷量將突破1600萬台” 自由時報,2021。[Online]. Available: https://ec.ltn.com.tw/article/paper/1480660
    [2]“從手機到電動車 無線充電擴大應用領域” DIGITIMES,2019。[Online]. Available: https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000565061_UKBLLWNP70F0WO0TXB9NS.
    [3]“Tesla充電樁” Tesla,2022。 [Online]. Available: https://www.tesla. com/zh_tw
    [4] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
    [5] V. B. Vu, M. Dahidah, V. Pickert, and V. T. Phan, “An improved LCL-L compensation topology for capacitive power transfer in electric vehicle charging,”IEEE Access, vol. 8, pp. 27757-27768, Feb. 2020.
    [6] H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
    [7] J. Kracek and M. Svanda, “Analysis of capacitive wireless power transfer,” IEEE Access, vol. 7, pp. 2169-3536, Dec. 2018.
    [8] E. Abramov, I. Zeltser, and M. M. Peretz, “A network-based approach for modeling resonant capacitive wireless power transfer systems,” CPSS Trans. Power Electron. Appl., vol. 4, no. 1, pp. 19-29, Mar. 2019.
    [9] A. Banerji, T. Datta, G. Bandyopadhyay, S. K. Biswas, A. Banerji, and A. Banerji, “Wireless transfer of power: status and challenges,” in Proc. IEEE ICICPI, 2016, pp. 251-257.
    [10] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, June 2003.
    [11] S. Y. Ron Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
    [12] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
    [13] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan 2007.
    [14] E. Moradi, L. Sydänheimom G. S. Bova, and L. Ukkonen,“Measurement of wireless power transfer to deep-tissue RFID-based implants using wireless repeater node,” IEEE Antennas Wireless Propag. Lett., vol 16, pp. 2171-2174, May 2017.
    [15] M. A. S. Tajin, M. Jacovic, G. Dion, W. M. Mongan, and K. R. Dandekan, “UHF RFID channel emulation testbed for wireless IOT systems,” IEEE Access, vol 9, pp. 68523-68534, May 2021.
    [16] S. J. A. Majerus, P. C. Fletter, M. S. Damaser, and S. L. Garverick,“Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 763-767, March 2011.
    [17] R. Jegadeesan, K. Agarwal, Y. X. Guo, S. C. Yen, and N. V. Thakor, “Wireless power delivery to flexible subcutaneous implants using capacitive coupling,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 1, pp. 280-292, Jan. 2017.
    [18] 廖芝翊,應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2018年。
    [19] 蔡明翰,非接觸式電動車動態供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2019年。
    [20] S. Fukuda, H. Nakano, Y. Murayama, T. Murakami, O. Kozakai, and
    K. Fujimaki, “A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems,” in Proc. IEEE MTT-S Int. Microw. Workshop Ser. Innov. Wireless Power Transmiss.: Technol., Syst., Appl., 2012, pp. 241-244.
    [21] “異物偵測技術排除有害金屬 中高功率無線充電安全第一” 新通訊元件雜誌,2018。 [Online]. Available: https://www.2cm.com.tw/2cm/ zh- tw/tech/CE78DBFCC1774BF1A4162421EB79D358.
    [22] 賴信安,空間自由定位充電之近無指向性無線電能傳輸研究,國立成功大學電機工程學系碩士論文,2020年。
    [23] 陳信宗,應用雙環同軸型線圈於感應式/電容式複合型雙頻無線電能傳輸之研究,國立成功大學電機工程學系碩士論文,2021年。
    [24] Oak ridge national lab unveils 120-kilowatt wireless EV charging system, [Online]. Available: https://www.greentechmedia.com/articles/ read/oak-ridge-national-lab-unveils-120-kw-wireless-ev-charging- system#gs.hFElRK0
    [25] “無線電動車充電標準SAE J2954確立,新創公司WiTricity獲得新資金挹注” 科技產業資訊室,2020。 [Online]. Available: https:// iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=17207。
    [26] H. Mahdi, B. Hoff, and T. Østrem, “Evaluation of capacitive power transfer for small vessels charging applications,” in Proc. IEEE ISIE, 2020, pp. 1605-1610.
    [27] H. Zhang, C. Zhu, S. Zheng, Y. Mei, and F. Lu, “High power capacitive power transfer for electric aircraft charging application,” in Proc. IEEE NAECON, 2019, pp. 36-40.
    [28] J. Dai and D. C. Ludois, “Capacitive power transfer through a conformal bumper for electrical vehicle charging,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1015-1025, Sept. 2016.
    [29] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A two-plate capacitive wireless power transfer system for electric vehicle charging applications,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 964-969, Feb. 2018.
    [30] Y. Wu, Q. Chen, X. Ren, and Z. Zhang, “Efficiency optimization based parameter design method for the capacitive power transfer system,” IEEE Trans. Power Electron., vol. 36, no. 8, pp. 8774-8785, Jan. 2021.
    [31] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6011-6014, Nov. 2015.
    [32] H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
    [33] X. C. Yang, L. C. Wei, and Z. Juan, “Analysis of power transfer characteristic of capacitive power transfer system and inductively coupled power transfer system,” in Proc. IEEE International Conference on Industrial Technology, 2011, pp. 1281-1285.
    [34] B. Luo, T. Long, R. Mai, R. Dai, Z. He, and W. Li, “Analysis and design of hybrid inductive and capacitive wireless power transfer for high-power applications,” IET Power Electronics., vol. 11, no. 14, pp. 2263-2270, Nov. 2018.
    [35] X. Y. Zhang, C. D. Xue, and J. K. Lin, “Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4307-4316, Nov. 2017.
    [36] X. Chen, S. Yu, S. Song, R. T. H. Li, X. Yang, and Z. Zhang, “Hybrid coupler for 6.78M Hz desktop wireless power transfer applications with stable open-loop gain,” IET Power Electron., vol. 12, no. 10, pp.2642-2649, Aug. 2019.
    [37] X. Li, C. Tang, X. Dai, P. Deng, and Y. Su, “An inductive and capacitive combined parallel transmission of power and data for wireless power transfer systems,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4980-4991, June 2018.
    [38] Z. Pantic, K. Lee, and S. M. Lukic, “Multifrequency inductive power transfer,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5995-6005, Nov. 2014.
    [39] Z. Liu, M. Su, Q. Zhu, L. Zhao, and A.P. Hu, “A dual frequency tuning method for improved coupling tolerance of wireless power transfer system,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7360-7365, Jul. 2021.
    [40] C. Zhao and D. Costineet, “GaN-based dual-mode wireless power transfer using multifrequency programmed pulse width modulation,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9165-9176, Nov. 2017.
    [41] 温宗庭,具改良E型雙槽口電能拾取器之非接觸式條帶狀感應供電軌道系統,國立成功大學電機工程學系碩士論文,2020年。
    [42] 姚齊,13.56 MHz射頻功率電源供應器研製,國立成功大學電機工程學系碩士論文,2016年。
    [43] 曾麒睿,無線電能傳輸系統之諧振補償網絡特性研究,國立成功大學電機工程學系碩士論文,2020年。
    [44] 曾傳勳,結合感應式與電容式無線電能傳輸之雙環同軸型耦合結構研究,國立成功大學電機工程學系碩士論文,2020年。
    [45] Y. Zhang and Z. Zhao, “Frequency splitting analysis of two-coil resonant wireless power transfer,” IEEE Antenna Wireless Propag. Lett., vol. 13, pp. 400-402, 2014.
    [46] R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.
    [47] C. Qi, H. Miao, Z. Lang, and X. Chen, “A generalized Methodology to generate, amplify and compensate multi-frequency power for a single-inverter-based MF-MR-S-WPT system,” IEEE Access, vol. 8, pp. 181513-181525, Oct. 2020.
    [48] S. Sinha, A. Kumar, B. Regensburger, and K. K. Afridi, “Active variable reactance rectifier-a new approach to compensating for coupling variations in wireless power transfer systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 2022-2040, Sept. 2020.
    [49] EP4CE6E22C8 Data Sheet, Altera Inc., 2016.
    [50] LM7805 Data Sheet, Texas Instruments Inc., 2016.
    [51] MAX256 Data Sheet, Maxim Integrated Products Inc., 2015.
    [52] 1EDI20N12AF Data Sheet, Infineon Technologies Inc., 2015.
    [53] NVH4L080N120SC1 Data Sheet, On Semiconductor Inc., 2018.
    [54] DSEP30-06A Data Sheet, IXYS Inc., 2016.

    無法下載圖示 校內:2027-08-05公開
    校外:2027-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE