簡易檢索 / 詳目顯示

研究生: 許家銘
Hsu, Chia-Ming
論文名稱: RPR網路上改善TCP傳輸效能之研究
Enhance TCP Performance Over RPR Networks
指導教授: 李忠憲
Li, Jung-Shian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 58
中文關鍵詞: IEEE 802.17 彈性封包環都會型網路TCP在彈性封包環網路上傳輸速率控制
外文關鍵詞: IEEE 802.17 RPR, TCP over RPR, Metropolitan Area Network, rate-based control
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   IEEE 802.17 彈性封包環由於其達到公正和快速恢復的能力,而具有成為都會型網路骨幹的潛力。 彈性封包環是一個可控制傳輸速率的環狀網路。 它是由IEEE 802.17來制定它的標準化規格,而且已經有一些提議被提出到IEEE 802.17的工作群組中。這篇論文是用來研究以滑動視窗為基礎進行速率控制的TCP在彈性封包環網路上的效能影響。我們提出一個用來研究TCP在彈性封包環的傳輸速率控制機制上的所得的效能。我們透過詳細的模擬可以得知我們所提出的分析模式是準確的。而且,我們也知道緩衝區大小的增加將會增加在RPR上的TCP性能。 但事實上這只是一種消極的做法。 因此我們再提出另外可以改善效能的方法。這些方法利用一個概念,那就是利用提早丟棄封包來避免在壅塞發生時有過多的封包遭到丟棄。如此,我們就可以提高在RPR上的TCP效能。

      IEEE 802.17 RPR is a MAN (Metropolitan Area Network) candidate due to its ability to achieve fairness and fast restoration. RPR is a ring network with rate-based control. It is standardized as IEEE 802.17 and several proposals have been made to the IEEE 802.17 working group. This paper investigates the performance impact of TCP with window-based control over RPR network. We propose an analytical model is developed to study TCP performance over RPR rate-based control. Through detailed simulations, the proposed analytical model is shown to be accurate. Furthermore, we can understand that the increase of buffer size can enhance the performance of TCP over RPR. But that is just a negative way in fact. So we propose our enhanced schemes again. The schemes use a concept that some packet should be dropped when the congestion is happened so that the excessive packet loss can be avoided. Therefore, the performance of TCP over RPR is enhanced.

    1 Introduction…………………………………………………………………………………1 2 Related Works……………………………………………………………………………4 2.1 Overview of RPR………………………………………………………………………4 2.2 RPR node structure …………………………………………………………………6 2.3 RPR fairness algorithm……………………………………………………………10 2.3.1 Congestion detection of Aggressive Mode (AM)……………………………13 2.3.2 Congestion detection of Aggressive Mode (AM)……………………………14 2.4 The compute of allowedRate Congested of RPR ………………………………14 2.4.1 Aggressive Mode (AM)……………………………………………………………15 2.5 Brief descriptions of RED queue ………………………………………………19 3 Problem Overview………………………………………………………………………22 3.1 Issues on TCP over RPR Network…………………………………………………22 3.2 Buffer requirement…………………………………………………………………23 3.2.1 Discussion on a single TCP connection over RPR network………………23 3.2.2 Discussion on multiple TCP connection over RPR network………………27 3.3 Extended question …………………………………………………………………28 4 Our Enhanced Schemes…………………………………………………………………29 5 Simulation and Results………………………………………………………………31 5.1 Simulation I…………………………………………………………………………31 5.1.1 A single TCP connection in the RPR network………………………………32 5.1.2 Multiple TCP connection in the RPR network………………………………33 5.2 Simulation II ………………………………………………………………………35 5.3 Simulation III………………………………………………………………………37 5.3.1 Simulation of single TCP flow ………………………………………………37 5.3.2 Simulation of multiple TCP flows with the same RTT……………………39 5.3.2.1 Multiple TCP flows (10 TCP flows) ………………………………………39 5.3.2.2 Multiple TCP flows (50 TCP flows) ………………………………………41 5.3.3 Simulation of multiple TCP flows with different RTT …………………43 5.3.3.1 Multiple TCP flows (10 TCP flows) ………………………………………43 5.3.3.2 Multiple TCP flows (50 TCP flows) ………………………………………46 5.3.4 Simulation of multiple TCP flows……………………………………………49 5.3.3.1 Multiple TCP flows (10 TCP flows) ………………………………………50 5.3.3.2 Multiple TCP flows (50 TCP flows) ………………………………………51 5.4 Simulation of multiple TCP flows with different RTT ……………………51 5.3.3.1 Simulation topology …………………………………………………………52 5.3.3.2 Multiple TCP flows (10 TCP flows) ………………………………………53 5.3.3.3 Multiple TCP flows (50 TCP flows) ………………………………………54 5 Conclusion………………………………………………………………………………55 6 References………………………………………………………………………………57

    [1] IEEE 802.17 RPR working group, IEEE Draft p802.17/D3.3, April 21, 2004 http://grouper.ieee.org/groups/802/17/.
    [2] D. Tsiang and G. Suwala. The Cisco SRP MAC Layer Protocol, August2000. Internet RFC 2892.
    [3] V. Gambiroza, P. Yuan, L. Balzano and Y. Liu. Design, Analysis, and Implementation of DVSR: A Fair, High Performance protocol for Packet Rings, To appear in IEEE/ACM Transactions on Networking, 2002.
    [4] N. McKeown, V. Anantharam, and J.Walrand. Achieving 100% Throughput
    in an Input-Queued Switch. In Proceedings of IEEE INFOCOM ’96,
    San Francisco, CA, March 1996.
    [5] A. Mekkittikul et al. Alladin Proposal for IEEE Standard 802.17, Draft
    1.0, November 2001.
    [6] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: a new class of queue management algorithms,” U. Michigan CSE-TR-387-99, April 1999.
    [7] S. Floyed, and K. Fall, “Router mechanisms to support end-to-end congestion control,” Tech.rep, LBL, 1997. (http://www3nrg.ee.lbl.gov/nrg-thesiss.html.)
    [8] S. Floyed and V. Jacobson, “ Random early detection gateways for congestion avoidance” IEEE/ACM Transactions on Networking, vol. 1, Number 4, pp397-413, August 1993
    [9] E. Hash. “Analysis of random drop for gateway congestion control,” Rep. LCS TR-465. Lab. for Comput. Sci.. M.I.T., 1989, p.103
    [10] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for Web Traffic,” IEEE/ACM Transactions on Networking, vol. 9, NO. 3, 2001
    [11] [Online]. Available: http://www.aciri.org/floyed/REDparameters.txt
    [12] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose, “Modeling tcp throughput: A simple model and its empirical validation,” in Proceedings of ACM SIGCOMM’ 98, 1998.
    [13] W. Stevens, “TCP slow start, congestion avoidance, fast retransmit, fast recovery algorithms,” RFC2001, Jan. 1997.
    [14] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high bandwidth-delay products and random loss,” IEEE/ACM Trans. Networking, vol. 5, pp. 336–350, June 1997.
    [15] The Network Simulator – ns-2, [Online], http://www.isi.edu/nsnam/ns/

    下載圖示 校內:2005-07-29公開
    校外:2005-07-29公開
    QR CODE