簡易檢索 / 詳目顯示

研究生: 江承鴻
Jiang, Cheng-Hong
論文名稱: 在H.264/AVC上之固定拉格朗日參數位元率控制演算法
Rate Control Scheme Based on Fixed Lagrange Multipliers for H.264/AVC
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 位元控制拉格朗日參數位元率失真成本最佳化
外文關鍵詞: Rate Control, Lagrange Multiplier, Rate Distortion Optimization
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般的視訊編碼中,在位元率失真成本最佳化 (Rate Distortion Optimization)過程中通常利用拉格朗日參數 (Lagrange Multiplier)來權衡位元率與失真量並計算出位元率失真成本 (Rate Distortion Cost)並找到最合適的編碼模式。然而量化參數(Quantization Parameter)必須事先決定,這往往不是最好的。在本論文中,我們首先提出一個基於固定Lagrange Multiplier的2-Pass編碼位元率控制(Rate Control)方法。透過Pass-1編碼後可以預測出一個精確的Lagrange Multiplier,並在Pass-2編碼中採用它做為一個固定參數。在優化過後,我們提出了1-Pass編碼位元率控制方法,不僅保持了影像品質而且還降低了計算複雜度。實驗結果顯示,相對於實現JVT-G012的H.264/AVC參考軟體JM13.2,我們提出的2-Pass編碼方法與1-Pass編碼方法兩者皆大大的提高影像品質。此外還提出了優化程序,以減少計算複雜度和準確控制位元率。

    In general video coding, the process of Rate Distortion Optimization (RDO) usually utilizes the Rate-Distortion (R-D) cost function involving the Lagrange multiplier to weight the ratio between bit rates and distortions to find the most suitable encoding mode. However, the quantization parameter (QP) has to be decided in advance, which is often not the best one. In this thesis, at first we propose a two-pass rate control (RC) mechanism based on a fixed Lagrange multiplier. An accurate lambda value is estimated after the first pass coding, so that it can be adopted as a fixed parameter in the second pass coding. After optimization, we proposed the one-pass RC scheme not only keep the video quality performance but also reduce the computational complexity. Experiment results show that, compared to the JVG-G012 method implemented in H.264/AVC reference software JM13.2, both the proposed two-pass and one-pass method could significantly improve the video quality. Besides, a proposed optimum procedure is also presented to reduce the computational complexity and accurately controls the bit rate.

    目錄 中文摘要.........................................II ABSTRACT........................................III 致謝............................................IV 目錄............................................V 圖目錄..........................................VII 表目錄..........................................IX 第一章 緒論......................................1 1-1 位元率控制簡介...............................1 1-1-1 可變位元速率控制...........................3 1-1-2 固定位元速率控制...........................3 1-2 研究動機....................................4 1-3 論文架構....................................5 第二章 研究背景..................................6 2-1 H.264/AVC中的預測模式........................6 2-1-1 畫框內預測.................................6 2-1-2 畫框間預測.................................9 2-2 量化與熵編碼.................................10 2-3 位元率失真成本最佳化..........................11 2-4 位元率控制...................................15 2-4-1 位元率分配.................................17 2-4-2 失真率模型與更新方法........................19 2-4-3 線性平均絕對差的預測........................22 2-5 其他位元率控制演算法介紹......................23 2-5-1 平方根位元率控制演算法......................23 2-5-2 Rate-Quality model畫面層級位元率控制演算法..25 2-5-3 2-Pass位元率控制演算法.....................26 第三章 演算法的實現與分析.........................27 3-1 Lagrange Multiplier與量化參數之關係..........27 3-2 固定Lagrange Multiplier之2-Pass編碼器.......32 3-3 固定Lagrange Multiplier之2-Pass編碼器優化....36 3-4 修正固定Lagrange Multiplier編碼流程..........41 3-5 更準確的位元率控制...........................43 3-6 固定Lagrange Multiplier之1-Pass編碼器.......45 第四章 實驗結果.................................47 第五章 結論與未來展望............................56 參考文獻.......................................57 附錄A.........................................61 附錄B.........................................73 附錄C.........................................88 附錄D.........................................103

    [1] ISO-IEC/JTC1/SC29/WG11/N0400. Test Model 5, April 1993.
    [2] ITU Telecom. Standardization Sector of ITU, “Video Codec Test Model Near-Term, Version 8 (TMN8)”, H.263 Ad Hoc Group, Jun. 1997.
    [3] ISO/IEC 14496-2 MPEG4 Video VM—Version 8.0, ISO/IEC JTC1/SC29/WG11, 1997, Coding of Moving Pictures and Associated Audio MPEG 97/W1796. Stockholm, Sweden: Video Group.
    [4] Z.G. Li, F. Pan, K.P. Lim, G. Feng, X. Lin and S. Rahardja, “Adaptive basic unit layer rate control for JVT,” JVT-G012-r1,7th Meeting, Pattaya II, Thailand, Mar. 2003.
    [5] X. Yi and N. Ling, “Improved H.264 rate control by enhanced MAD-based frame complexity prediction,” Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp. 407-424, 2006.
    [6] W. Yuan, S. Lin, Y. Zhang, W. Yuan, and H. Luo, “Optimum bit allocation and rate control for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 6, pp. 705-715, Jun. 2006.
    [7] Y. Chen and O.C. Au, “Simultaneous RD-optimized rate control and video de-noising,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2008, pp. 669-672.
    [8] C. Sun, H. Wang, T. Kim, and H. Li, “Perceptually Adaptive Lagrange Multiplier for Rate-Distortion Optimization in H.264,” in Proc. Future Generation Communication and Networking, 2007, pp. 459-463.
    [9] M. Jiang and N. Ling, “Frame-layer H.264 rate control improvement using Lagrange multiplier and quantizer,” in Proc. IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, 2005, pp. 4369-4372.
    [10] X. Li, N. Oertel, A. Hutter, and A. Kaup, “Laplace distribution based Lagrangian rate distortion optimization for hybrid video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 193-205, Feb. 2009.
    [11] M. Jiang and N. Ling, “On Lagrange multiplier and quantizer adjustment for H.264 frame-layer video rate control,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 5, pp. 663-669, May 2006.
    [12] G.J. Sullivan and T. Wiegand, “Rate-distortion methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90, Nov. 1998.
    [13] A. Ortega and K. Ramchandran, “Rate-distortion Methods for image and video compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, Nov. 1998.
    [14] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan, “Rate-constrained coder control and comparison of video coding standards,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 688-703, Jul. 2003.
    [15] S. Ma, W. Gao, D. Zhao, and Y. Lu, “A study on the quantization scheme in H.264/AVC and its application to rate control,” Advances in Multimedia Information Processing-PCM 2004, pp.192-199, 2005.
    [16] T. Chiang and Y. Q. Zhang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 246-250, Feb. 1997.
    [17] J. Katto and M. Ohta, “Mathematical analysis of MPEG compression capability and its application to rate control,” in Proc. IEEE Int. Conf. Image Processing, 1995, pp. 555-558.
    [18] J. Wang, Z. Chen, Y. He, and Y. Chen, “A MAD-based rate control strategy,” Document JVT-D070, Klagenfurt, Austria, 2002.
    [19] J. Dong and N. Ling, “On Model Parameter Estimation for H.264/AVC Rate Control,” in Proc. IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007, 2007, pp. 289-292.
    [20] Z. He, Y. Kim, and S. K. Mitra, “Low-delay rate control for DCT video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 8, pp. 928-940, Aug. 2001.
    [21] Z. He and S. K. Mitra, “A unified rate-distortion analysis framework for transform coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 12, pp. 1221-1236, Dec. 2001.
    [22] Z. He and S. K. Mitra, “Optimum bit allocation and accurate rate control for video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 10, pp. 840-849, Oct. 2002.
    [23] Z. He and S. K. Mitra, “A linear source model and a unified rate control algorithm for DCT video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 11, pp. 970-982, Nov. 2002.
    [24] Z. He and S. K. Mitra, “ ρ-domain bit allocation and rate control for real time video coding,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 546-549, Oct. 2001.
    [25] Z. He, Y. K. Kim, and S. K. Mitra, “ ρ-domain source modeling and rate control for video coding and transmission,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 3, pp. 1773-1776, May 2001.
    [26] L. Liu and X. Zhuang, “A novel square root rate control algorithm for H.264/AVC encoding,” in Proc. IEEE Int. Conf. Multimedia and Expo., pp.814-817, Jun. 2009.
    [27] L. Zhuo, X. Gao, Z. Wang, DD Feng, and L. Shen, “A novel rate-quality model based H.264/AVC frame layer rate control method,” in Proc. Information, Commintications & Signal Orocessing, 2007 6th International Conference on, 2007, pp. 1-5.
    [28] Y. Yue, J.Zhou, Y. Wang, and C.W. Chen, “A novel two-pass VBR coding algorithm for fixed size storage applications,” IEEE Trans. On Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 345-356, Mar 2001.
    [29] P.H. Westerink, R. Rajagopalan, and C.A. Gonzales, “Two-pass MPEG-2 variable-bit-rate encoding,” IBM Journal of Research and Development, vol.43, no.4, pp. 471-488, Jul. 1999.
    [30] S. Ma, W. Gao, and Y. Lu, “Rate-distortion analysis for H.264/AVC video coding and its application to rate control,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 12, pp. 1533-1544, Dec. 2005.
    [31] Reference Software JM13.2 Joint Video Team. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/

    下載圖示 校內:2015-08-19公開
    校外:2015-08-19公開
    QR CODE