簡易檢索 / 詳目顯示

研究生: 彭學泓
Peng, Syue-Hong
論文名稱: 應用孔彈性理論於抽水試驗分析土壤壓密沉陷行為之研究
Analytically Investigate Soil Consolidation Due to Field Pumping Tests
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 孔彈性理論抽水試驗分層水位井
外文關鍵詞: pumping test, poroelasticty, multi-channel well
相關次數: 點閱:33下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層下陷在台灣西南沿海平原是一種常見的地質災害,其根本原因在於台灣水資源乾濕季分布不均,且農業、工業和養殖業等活動快速增長所帶來對水資源的急劇需求,這股需求使得地下水成為一種相對容易取得和成本效益高的水源,尤其於雲彰地區其水源來源大多來自地下水。然而,這也同時引發了許多平原地區過度抽取地下水的問題,造成超額孔隙水壓消散,有效應力逐漸增加,壓實土壤骨架減少孔隙空間,最終導致嚴重且不可逆的地層下陷,影響高鐵等重大建設之安全風險增加,維護成本提高,近十年雖然雲林彰化地區沉陷量已呈趨緩趨勢,但109年雲林下陷速率仍高達5.5公分/每年,而彰化沉陷速率也達到了5公分/每年,為了更進一步理解抽水與沉陷之行為關係,本研究於地下水位觀測井進行抽水試驗,同時以分層水位井記錄不同深度土層間的水位變動,並進行不同時間長度的抽水試驗,根據Lo et al.(2014)應用Lo et al. (2005)所提出之多孔彈性介質中含不相容、可壓縮且具有黏滯性流體的孔彈性理論方程式推導出之非飽和土壤壓密理論,將其簡化為一維土壤壓密之解析解,應用分層水位井記錄地下水位觀測井進行抽水試驗之數據於此解析解方程式與磁環地陷井量測值進行比較。
    研究結果顯示,淺層土壤在抽水過程中,由於前期土層的解壓行為會導致壓密行為無法完全準確計算,且土壤有遲滯現象,導致解析解在計算上容易高估沉陷量。由分層水位井的觀測及計算的數據結果,土層變化趨勢與磁環地陷井量測之結果一致,不僅驗證了水位分層井及孔隙彈性理論模型的適用性,也在實際應用中發現無論是計算砂土層佔比較多處與黏土及粉土層處之沉陷量會有高估現象發生,於黏土層尤為顯著。

    Land subsidence is a common geological disaster primarily caused by excessive groundwater extraction. This issue has led to severe and irreversible land subsidence in many plain areas, increasing the safety risks for major constructions, such as high-speed rail, raising maintenance costs, and causing land loss. Therefore, this study conducts pumping tests at groundwater observation wells, recording water level changes at different soil depths using the Multi-Channel Wells. Pumping tests are carried out for varying durations to observe the effects over different time periods. The soil consolidation theory based on the poroelastic equations proposed by Lo et al. (2014) for an elastic porous medium containing an incompatible, compressible, and viscous fluid, is simplified into a one-dimensional analytical solution. The water level data from the multi-channel wells are incorporated into this analytical solution equation, and then compared with the measurements from the multi-level compaction monitoring wells.
    The results obtained by our study reveals that during the pumping process, decompression of the initial soil layers and hysteresis leads to less accurate consolidation calculations, often overestimating subsidence. Nonetheless, data from the multi-channel wells closely aligns with measurements from the multi-level compaction monitoring wells, confirming the validity and applicability of both the multi-channel wells and the theoretical consolidation model of poroelasticity.

    摘要 I ABSTRACT II 致謝 IX 目錄 X 表目錄 X 圖目錄 XIII 第一章 緒論 1 1-1 研究動機及目的 1 1-2 研究架構與流程 2 第二章 文獻回顧 4 2-1 壓密沉陷理論綜述 4 2-2 壓密沉陷理論於實際應用 6 2-3 抽水引發壓密行為研究 8 第三章 研究區域 9 3-1 研究區域概述 9 3-2 元長國小區域介紹 10 3-3 湖南國小區域介紹 12 3-4 地質分布 15 第四章 研究方法 17 4-1 孔彈性方程式 17 4-2 線性應力-應變關係 17 4-3 土壤壓密變化之孔隙率 21 4-4 分層水位井建置 22 4-5 抽水試驗 26 4-6 土壤參數 27 4-6-1 篩分析實驗 31 4-6-2 定水頭試驗 33 4-7 抽水試驗地陷井量測 38 第五章 結果與討論 40 5-1 抽水試驗分析 40 5-2 參數率定與驗證 48 5-2-1 參數率定 48 5-2-2 參數驗證 51 5-3 孔隙率對沉陷量之影響 55 第六章 結論與建議 57 6-1 結論 57 6-2 建議 58 參考文獻 60

    1. Bear, J., & Corapcioglu, M. Y. (1981). Mathematical model for regional land subsidence due to pumping. 2. Integrated aquifer subsidence equations for vertical and horizontal displacements. Water Resources Research, 17(3), 947-958.
    2. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155-164.
    3. Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482-1498.
    4. Bishop, A. W. (1959). The effective stress principle. Teknisk Ukeblad, 98, 859-863.
    5. Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land Subsidence in the United States. U.S. Geological Survey Circular 1182.
    6. Lin, P.-L., Hsu, K.-C., Lin, C.-W., & Hwung, H.-H. (2015). Modeling Compaction of Multi-Layer-Aquifer System Due to Groundwater Pumping. Engineering Geology, 187, 58-70.
    7. Lo, W. C., Sposito, G., & Majer, E. (2002). Immiscible two-phase fluid flows in deformable porous media. Advances in Water Resources, 25(8-12), 851-860.
    8. Lo, W. C., Sposito, G., & Majer, E. (2005). Wave propagation through elastic porous media containing two immiscible fluids. Water Resources Research, 41, W02025.
    9. Lo, W. C., Yeh, C. L., & Tsai, C. T. (2007). Effect of soil texture on the propagation and attenuation of acoustic waves at unsaturated conditions. Journal of Hydrology, 338, 273-284.
    10. Lo, W. C., & Sposito, G. (2013). Acoustic waves in unsaturated soils. Water Resources Research, 49(9), 5674-5684.
    11. Lo, W. C., Sposito, G., & Chu, H. (2014). Poroelastic theory of consolidation in unsaturated soils. Vadose Zone Journal, 13(5).
    12. Luo, Z. J., & Zeng, F. (2011). Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elastic-plastic Biot’s consolidation theory. Journal of Hydrodynamics, 23(5), 615-624.
    13. Mahmoudpour, A., et al. (2016). Analysis of soil subsidence due to change in groundwater level in Tehran plain. Engrxiv.
    14. Oka, F., Adachi, T., & Okano, Y. (1986). Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation. International Journal for Numerical and Analytical Methods in Geomechanics, 10, 1-16.
    15. Pride, S. R. (2005). Relationships between seismic and hydrological properties. In Y. Rubin & S. S. Hubbard (Eds.), Hydrogeophysics (pp. 253-291). Springer-Verlag.
    16. Rawls, W. J., Ahuja, J. R., & Brakensiek, D. L. (1992). Estimating soil hydraulic properties from soils data. Proceedings of Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, 329-341.
    17. Rutqvist, J., Wu, Y.-S., Tsang, C.-F., & Bodvarsson, G. (2002). "A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock." International Journal of Rock Mechanics and Mining Sciences, 39(4), 429-442.
    18. Terzaghi, K., 1925,Erdbaumechanik auf bodenphysikalisher Grundlage: Vienna, Austria, Deuticke, 399 p.
    19. Terzaghi, K., 1943, Theoretical soil mechanics, John Wiley, New York.
    20. Tsai, T. L., Chang, K. C., & Huang, L. H. (2006). Body force effect on consolidation of porous elastic media due to pumping. Journal of the Chinese Institute of Engineers, 29(1), 75-82..
    21. Tseng, C. M., Tsai, T. L., & Huang, L. H. (2008). Effects of body force on transient poroelastic consolidation due to groundwater pumping. Environmental Geology, 54, 1507-1516.
    22. Tuncay, K., & Corapcioglu, M. Y. (1996). Consolidation of elastic porous media saturated by two immiscible fluids. Journal of Engineering Mechanics, 122(11), 1077-1085.
    23. Wang, H. F. (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press.
    24. Wang, D., Li, M., Chen, J., Xia, X., & Zhang, Y. (2019). "Numerical Study on Groundwater Drawdown and Deformation Responses of Multi-Layer Strata to Pumping in a Confined Aquifer." Journal of Shanghai Jiao Tong University (Science), 24(3), 287-293.
    25. Zhang, Y., Xue, Y., Wu, J., Wang, H., & He, J. (2012). Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Engineering Geology, 125, 74-80.
    26. 葉昭龍,羅偉誠,林政偉,丁崇峯,& 許時倫 (2014)。荷重引發土體應力增量對壓密沉陷之影響。上海國土資源,35(4),31-34。
    27. 葉昭龍,羅偉誠,林政偉,丁崇峯 (2014)。地下水位變化對孔隙介質壓密行為之影響。第八屆地下水資源及水質保護研討會暨2014兩岸地下水與水文地質應用研討會。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE